首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melamine formaldehyde-furfuryl alcohol copolymer was impregnated into softwood in combination with 1,3-dimethylol-4,5-dihydroxy ethyleneurea, a crosslinking agent, nanoclay, and a renewable polymer, collected as gum from a local plant (Moringa oleifera) under vacuum condition and polymerized by catalyst heat treatment. Fourier-transform infrared spectroscopy, X-ray diffractometry, and scanning electron microscopy were used to characterize the nanocomposites. Transmission electron microscopy showed uniform distribution of nanoclay in the composites. The mechanical properties were improved after the addition of plant polymer. The plant polymer had a marked influence on the flammability and thermal stability of the prepared composites. The apparent activation energy was determined by Ozawa-Flynn-Wall’s and Vyazovkin methods. The activation energy of the composites decreased up to a certain decomposed fraction thereafter it remained constant. Higher the plant polymer content higher was the activation energy of the prepared composites which indicated a better interfacial adhesion and thermal stability.  相似文献   

2.
The extent of organo-modified clay (C93A) platelets dispersion in polymer matrix and crystallization and melting behavior of iPP-based nanocomposites prepared by a single-step melt-mixing method were investigated by wide-angle X-ray diffraction (WAXD), transmission (TEM), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). WAXD patterns revealed exfoliated structure of nanocomposites containing 1 wt% clay, and mixed intercalated/exfoliated structure at higher concentration of nanoclay. The isothermal crystallization proceeds faster in the matrix polymer (iPP/PP-g-MA) than in nanocomposite samples. The results obtained for T m o suggest that the presence of nanoclay has induced a perfection of the formed crystals. The presence of C93A particles in PP leads to increase in crystallization peak temperature implying nucleating ability of clay particles, which was more pronounced in exfoliated than in mixed intercalated/exfoliated system.  相似文献   

3.
The thermal, morphological and optical studies of BaSO4 and MMT (nanoclay) embedded in PVDF were investigated. Nanocomposites samples of PVDF–BaSO4–MMT were prepared by varying the loadings (1–4 mass%) in case of BaSO4 and MMT nanomaterials, respectively. Polyvinylidene fluoride–barium sulfate-montmorillonite (PVDF–BaSO4–MMT) nanocomposites were prepared by solvent-mixing technique. Nanoparticles were synthesized by in situ deposition technique with the help of nonionic polymeric surfactant, and the particle size of nanoparticles was recognized by scanning electron microscopy (SEM) analysis which confirms that the particle has diameter of 80–90 nm. As prepared, nanocomposites films (thickness, 25 μm) were characterized by Fourier transform infrared microscopy (FTIR), SEM and electron diffraction spectroscopy (EDS). FTIR shows that all the chemical constituents were present in the nanocomposites, whereas SEM analysis suggested that the nanofillers dispersed well in polymer matrix and EDS showed the elemental composition of nanocomposite samples. Thermal properties of nanocomposites were studied by using TG/DTA/DTG. TG/DTA studies showed decomposition temperature of pure PVDF is 473.5 °C. The decomposition temperature (T d) of nanocomposites was increased by 93 °C in case of nanocomposites with addition of both BaSO4 and MMT nanomaterials. The difference in the thermal degradation temperature was found to be 1.2% higher in case of addition of BaSO4 nanoparticle as compared to nanoclay. The obtained transparent nanocomposite films were characterized by using UV–Vis spectrophotometer which shows that transparencies of nanocomposites are maintained in visible region, the intensity of absorption band in UV region is increased with the addition of BaSO4 nanoparticles, while in case of addition of nanoclay the UV region does not show drastic changes. Addition of both nanoparticle and nanoclay shows higher absorption in comparison with the individual samples. But further, doubling the amount of nanoparticle and nanoclay shows decrease in UV absorption. Overall, the results of thermal studies show that the incorporation of BaSO4 and MMT could significantly improve the thermal properties of nanocomposites.  相似文献   

4.
A novel amorphous polyamide/montmorillonite nanocomposite based on poly(hexamethylene isophthalamide) was successfully prepared by melt intercalation. Wide angle X-ray diffraction and transmission electron microscopy showed that organoclay containing quaternary amine surfactants with phenyl and hydroxyl groups was delaminated in the polymer matrix resulting in well-exfoliated morphologies even at high montmorillonite content. Differential scanning calorimetry results indicated that clay platelets did not induce the formation of a crystalline phase in this amorphous polymer. Tensile tests demonstrated that the addition of nanoclay caused a dramatic increase in Young's modulus (almost twofold) and yield strength of the nanocomposites compared with the homopolymer. The nanocomposites exhibited ductile behavior up to 5 wt % of nanoclay. The improvement in Young's modulus is comparable with semicrystalline aliphatic nylon 6 nanocomposites. Both the main chain amide groups and the amorphous nature of the polyamide are responsible for enhancing the dispersion of the nanofillers, thereby, leading to improved properties of the nanocomposites. The structure-property relationship for these nanocomposites was also explored. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2605–2617, 2008  相似文献   

5.
Poly(epsilon-caprolactone)/clay nanocomposites via “click” chemistry   总被引:1,自引:0,他引:1  
Poly(epsilon-caprolactone)/clay nanocomposites were prepared by copper(I) catalyzed azide/alkyne cycloaddition (CuAAC) “click” reaction. In this method, ring-opening polymerization of epsilon-caprolactone using propargyl alcohol as the initiator has been performed to produce alkyne-functionalized PCL and the obtained polymers were subsequently attached to azide-modified clay layers by a CuAAC “click” reaction. The exfoliated polymer/clay nanocomposites were characterized by X-ray diffraction spectroscopy, thermogravimetric analysis and transmission electron microscopy.  相似文献   

6.
Aramid–organoclay nanocomposites were fabricated through solution intercalation technique. Montmorillonite was modified with p-amino benzoic acid in order to have compatibility with the matrix. The effect of clay dispersion and the interaction between clay and polyamide chains on the properties of nanocomposites were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), tensile testing of thin films, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and water uptake measurements. Excessive clay dispersion was achieved even on the addition of high proportions of clay. The structural investigations confirmed the formation of delaminated nanostructures at low clay contents and disordered intercalated morphology at higher clay loadings. The tensile behavior and thermal stability significantly amplified while permeability reduced with increasing dispersibility of organoclay in the polyamide matrix.  相似文献   

7.
Clay was modified with an oligomeric surfactant containing styrene and lauryl acrylate units along with a small amount of vinylbenzyl chloride to permit the formation of an ammonium salt so that this can be attached to a clay. The oligomerically-modified clay contains 50% inorganic clay, and styrenic polymer nanocomposites, including those of polystyrene (PS), high-impact polystyrene (HIPS), styrene-acrylonitrile copolymer (SAN) and acrylonitrile-butadiene-styrene (ABS), were prepared by melt blending. The morphologies of the nanocomposites were evaluated by X-ray diffraction and transmission electron microscopy. Mixed intercalated/delaminated nanocomposites were formed for SAN and ABS while largely immiscible nanocomposites were formed for PS and HIPS. The thermal stability and fire properties were evaluated using thermogravimetric analysis and cone calorimetry, respectively. The plasticization from the oligomeric surfactant was suppressed and the tensile strength and Young's modulus were improved, compared to similar oligomerically-modified clays with higher organic content.  相似文献   

8.
Nanocomposites of polystyrene-b-polyisoprene (PS-b-PI) copolymer with layered-smectite clays (organically modified montmorillonite) and nanostructured clay-carbon nanotube hybrids were prepared. The diblock copolymer was synthesized by anionic polymerization using high-vacuum techniques and was molecularly characterized by size exclusion chromatography. Carbon nanotubes were developed on clay-supported nickel nanoparticles by the CCVD method. Nanotubes attached on the clay platelets were then chemically modified to create ester groups on their surfaces. PS-b-PI nanocomposites at various polymer to reinforcement loadings were prepared by solution intercalation. The final nanocomposites were characterized by powder X-ray diffraction, FT-IR spectroscopy, thermal analysis, and scanning electron microscopy. The experiments complemented with viscometry measurements reveal the successful incorporation of the reinforcements in the polymer mass.  相似文献   

9.
In this work, the effect of quaternary ammonium salt containing nanoclay content (1–5 wt%) on phase morphology, rheology, cure kinetics, and mechanical properties of the vinyl ester resin (VER)‐based nanocomposites was studied. The morphological characterization including d‐spacing measurement, microscopy observation and phase‐height image processing were performed on the prepared nanocomposites using small angel X‐ray scattering (SAXS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). According to the results obtained from these techniques, it was concluded that an intercalated morphology existed for all the nanocomposites. The kinetic analyses of the isothermal curing followed by storage modulus obtained from the rheometry experiments are shown to be an affective rheological characteristic to investigate the cure behavior of VER/clay nanocomposites. In addition, the most important finding regarding the effect of nanoclay on the cross‐linking behavior of VER systems lays on the chemisorption and physisorption of the reacting monomers and initiator molecules on the nanoclay platelets surface which is found to be responsible for the retardation of the cure reaction caused by organoclay. Eventually, the mechanical characterizations were performed through the tensile, flexural and impact analysis tests. In this case, a considerable improvement of the bulk mechanical responses such as tensile and flexural strengths and also the corresponding moduli were observed for the nanocomposites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In this research, fully environment-friendly, sustainable and biodegradable ‘green’ composites were fabricated. A novel material comprised of microfibrillated cellulose and laponite clay with different inorganic/organic ratios (m/m) was prepared. The composites were characterized by tensile, bending and water absorption tests as well as dynamic mechanical analysis. The morphologies of these nanocomposites were evaluated through scanning electron microscopy. Results showed considerable improvement of mechanical properties; specifically in elastic modulus, tensile strength and flexural modulus with the addition of nanoclay up to 7.5 wt% nano-clay. The modulus of elasticity increased significantly by about 26 % at 5 wt% nanocaly. The flexural modulus increased by about 90 % at 7.5 wt% nanoclay. However, with an increased load of clay in the nanocomposite, the mechanical properties decreased due to the agglomeration of excessive nanoclay. The storage modulus was significantly increased at high temperature with increasing the load of nanoclay.  相似文献   

11.
Nanocomposites based on polypropylene/polystyrene blends were prepared by melt mixing in a Thermo Haake Rheochord mixer. The effect of mercapto silane modified kaolin clay on the properties of nanocomposites has been studied. The characterization of polypropylene/polystyrene/clay nanocomposites was made by dynamic mechanical analysis, scanning electron microscope, and transmission electron microscopic, and the thermal stability was determined by using Thermogravimetric analysis. The activation energy of degradation was determined using three mathematical models, namely Horowitz–Metzger, Coats–Redfern and Broido's methods, and the results were compared. TGA results show an improved thermal stability for nanocomposite than the pure blend. The improvement in thermal stability of nanocomposites was confirmed by increasing the activation energy. Transmission electron microscopic observations showed that nanoclay layers were intercalated on the polymer matrix and were located at the interface between the two polymers Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Superior property enhancements in polymer–clay nanocomposites can be achieved if one can significantly enhance the nanoclay dispersion and polymer–clay interactions. Recent studies have shown that nanoclays can be dispersed in polymers using supercritical carbon dioxide (scCO2). However, there is need for a better understanding of how changing the clay modifier affects the clay dispersability by scCO2 and the resultant nanocomposite rheology. To address this, the polystyrene (PS)/clay nanocomposites with “weak” interaction (Cloisite 93A clay) and “strong” interaction (Cloisite 15A clay) have been prepared using the supercritical CO2 method in the presence of a co‐solvent. Transmission electron microscopy images and small‐angle X‐ray diffraction illustrate that composites using 15A and 93A clays show similar magnitude of reduction in the average tactoid size, and dispersion upon processing with scCO2. When PS and the clays are coprocessed in scCO2, the “dispersion” of clays appears to be independent of modifier or polymer–clay interaction. However, the low‐frequency storage modulus in the scCO2‐processed 15A nanocomposites is two orders of magnitude higher than that of 93A nanocomposites. It is postulated that below percolation (solution blended composites), the strength of polymer–clay interaction is not a significant contributor to rheological enhancement. In the scCO2‐processed nanocomposites the enhanced dispersion passes the percolation threshold and the interactions dictate the reinforcement potential of the clay–polymer–clay network. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 823–831, 2010  相似文献   

13.
The amylose–water interaction is part of an important equilibrating process within the starch matrix leading to slow recrystallization of amylose chains and growth of anisotropic properties in the starch matrix. This article highlights the influence of nanoclay on (a) the structural development of amylose crystallinity and (b) the rate of water loss from the starch matrix. By varying the nanocomposites level (1.5–4 wt %), a unique microstructure is obtained that “locks” moisture and it was found that on a per unit weight basis of the starch matrix, addition of 4 wt % nanoclay resulted in additional 8.5% water in the matrix. Also, it was found that increasing the nanoclay from 2 to 4% by weight, the composite modulus jumped by 100% indicating excellent interaction between clay nanocomposites and starch polymer. Analysis of the starch crystallinity data indicates that nanocomposites retard the mobility of the starch molecules (specially the long chain amylose component) to restrict the movement of “associated” water around starch and this increases the “locked” water by ~10%. The results strongly suggest that a new structural unit may be formed by amylose–water–clay interaction which enhances the composites properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 979–987, 2008  相似文献   

14.
刘天西  韦春 《高分子科学》2014,32(1):115-122
Polyamide I1 (PAll) and its nanocomposites with different organoclay loadings were prepared by melt-compounding and subsequent pelletizing. The crystal phase transitions of PAl 1 and its clay nanocomposites were investigated by variable-temperature X-ray diffraction. It was found that the Brill transition of the nanocomposite was 20 K higher than that of the neat PAl 1 for both heating and cooling processes. The PAl 1 d-spacings of the nanocomposites were observed to be smaller than those of the neat PAl 1 for melt crystallization. The constraints imposed by the addition of layered clay, restricting the thermal expansion of the polymer chains, are probably responsible for such a reduction of the d-spacing.  相似文献   

15.
In this paper pyridine and quinoline-containing salts were employed to modify montmorillonite. TGA analysis shows that the quinolinium modified clay has a higher thermal stability than the pyridinium modified clay. Polystyrene nanocomposites were prepared by in situ bulk polymerisation and direct melt blending using both clays. The X-ray diffraction and transmission electron microscopy results show the formation of intercalated structures. The 50% degradation temperature of the nanocomposites is increased and so is the amount of char from TGA analysis compared to the virgin polymer. Cone calorimetric results indicate that clay reduces the peak heat release rate and average mass loss rate and thus lowers the flammability of the polymer.  相似文献   

16.
The influence of nanoclay on the morphology and properties of the polypropylene (PP)/ethylene–octene block copolymer (EOC) blend with double compatibilizers of maleated PP (PP‐g‐MA) and maleated EOC (EOC‐g‐MA) was investigated and compared with the nanocomposites containing either PP‐g‐MA or EOC‐g‐MA as a compatibilizer. X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy were utilized for morphological characterization in conjunction with dynamic mechanical thermal analysis, mechanical testing, and rheological evaluation of these nanocomposites. The results suggested that in the nanocomposite including both compatibilizers of PP‐g‐MA and EOC‐g‐MA, clay was dispersed as a mixed structure of intercalation and exfoliation in both phases of the polymer blend. Comparing the mechanical properties of the studied nanocomposite with nanocomposites of PP/EOC/PP‐g‐MA/clay and PP/EOC/EOC‐g‐MA/clay also indicated that the nanocomposite containing mixed compatibilizers displayed higher tensile modulus, tensile strength, and complex viscosity because of the better dispersion of clay in both phases. The results also confirmed the increased structural stability and reduced dispersed phase size of PP/EOC/PP‐g‐MA/EOC‐g‐MA blend in the presence of clay that proposed the compatibilization role of clay in this nanocomposite. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Polymer composites have been the mainstay of high-performance structural materials, but these materials are inherently sensitive to environmental factors such as temperature, exposure to liquids, gases, electrical fields and radiation, which significantly affects their useful life. Addition of layered silicate nanofillers in the polymer matrix has led to improvements in the elastic moduli, strength, heat resistance, decreased gas permeability and flammability. In the present work epoxy modified with Cloisite 30 B̈ nanoclay (at 1, 3 and 5 wt% of resin) and E-glass unidirectional fibers are used to prepare fiber reinforced nanocomposites using hand lay-up method. The nanocomposites have been characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results show that the interlayer spacing between the clay platelets increased significantly indicating that the polymer is able to intercalate between the clay layers. The mechanical properties are measured by carrying out tensile, hardness and flexural tests and values are compared with those found for fiber reinforced neat epoxy composites. The tests show that an addition of nano-clay up to 3 wt% increases tensile strength and micro-hardness and there is a decrease in values with further clay addition up to 5 wt%. The flexural strength increased significantly with clay loading and the highest value is observed for specimens with 5 wt% of clay. Further, durability studies on nanocomposites have been performed in water and NaOH baths under accelerated hygrothermal conditions. During the exposure it is observed that the degradation in NaOH environment is more severe than in water.  相似文献   

18.
This investigation reports the preparation of tailor‐made poly(2‐ethylhexyl acrylate) (PEHA) prepared via in situ living radical polymerization in the presence of layered silicates and characterization of this polymer/clay nanocomposite. Being a low Tg (?65 °C) material, PEHA has very good film formation property for which it is used in paints, adhesives, and coating applications. 2‐Ethylhexyl acrylate was polymerized at 90 °C using CuBr and Cu(0) as catalyst in combination with N,N,N′,N″,N″‐pentamethyl diethylenetriamine (PMDETA) as ligand. A tremendous enhancement in reaction rate and polymerization data was achieved when acetone was added as additive to increase the efficiency of the catalyst system. PEHA/clay nanocomposite was prepared at 90 °C using CuBr as catalyst in combination with PMDETA as ligand. Different types of clay with same loading were also used to study the effect on reaction rate. The molecular weight (Mn) and polydispersity index of the prepared nanocomposites were characterized by size exclusion chromatography. The active end group of the polymer chain was analyzed by 1H NMR analysis and by chain extension experiment. Polymer/clay interaction was studied by Fourier Transform Infrared spectrometry and wide‐angle X‐ray diffraction analyses. Distribution of clay in the polymer matrix was studied by the transmission electron microscopy. Thermogravimetric analysis showed that thermal stability of PEHA/clay nanocomposite increases on addition of nanoclay. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
New hybrid organic–inorganic nanocomposites consist of β‐cyclodextrin (β‐CD)/epichlorohydrin (ECH), and bentonite clay were prepared by direct intercalation through one step emulsion polymerization. The structure and thermal stability of prepared nanocomposites were investigated by Fourier‐transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), field emission‐scanning electron microscopy (FE‐SEM), energy dispersive X‐ray analysis (EDAX), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), differential of differential scanning calorimetry (DDSC), thermogravimetric analysis (TGA) and differential thermogravimetric (DTG) analyses. The observed results show that the β‐CD polymer/clay nanocomposites (β‐CD–ECH polymer/clay) with higher thermal stability than β‐CD–ECH polymer were successfully prepared. The removal of heavy metals such as Cu(II), Zn(II) and Co(II) ions from drinking water was studied using a batch method at ambient temperature. The removal percentage and distribution coefficients (Kd) were determined for the adsorption system. It was found that the β‐CD–ECH polymer/clay nanocomposites showed higher removal capacity for Co2+, Cu2+ and Zn2+ ions in comparison with β‐CD–ECH polymer. The selectivity order could be given as Zn2+ > Cu2+ > Co2+. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Epoxy/clay nanocomposites with a high degree of exfoliation were achieved by intercalating liquid crystalline epoxy into clay intragallery as well as using a so-called ‘solution compounding’ process. In this process, clay modified was first treated with trichloromethane to form organoclay-trichloromethane suspension followed by liquid crystalline epoxy modification. The liquid crystalline epoxy grafted clay was then mixed extensively with epoxy to form epoxy/nanoclay composites. The mechanism of exfoliation was explored by monitoring the change of morphology of organoclay during each stage of processing with X-ray diffraction (XRD). The liquid crystalline epoxy grafted clay synthesised was characterised by fourier transform infrared spectroscopy (FT-IR) and polarising optical microscopy (POM). The clay platelets uniformly dispersed and highly exfoliated in the whole epoxy matrix were observed using transmission electron microscopy (TEM) and FT-IR imaging system. The epoxy nanocomposites were fabricated by incorporating different liquid crystalline epoxy grafted clay loading. The results revealed that the incorporation of liquid crystalline epoxy grafted clay resulted in a significant improvement in glass transition temperature (Tg) derived from dynamic mechanical analysis (DMA) and thermal stability measured by thermogravimetric analysis (TGA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号