首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We deal with the problem of orbital stability of planar periodic motions of a dynamically symmetric heavy rigid body with a fixed point. We suppose that the center of mass of the body lies in the equatorial plane of the ellipsoid of inertia. Unperturbed periodic motions are planar pendulum-like oscillations or rotations of the body around a principal axis keeping a fixed horizontal position. Local coordinates are introduced in a neighborhood of the unperturbed periodic motion and equations of the perturbed motion are obtained in Hamiltonian form. Regions of orbital instability are established by means of linear analysis. Outside the above-mentioned regions, nonlinear analysis is performed taking into account terms up to degree 4 in the expansion of the Hamiltonian in a neighborhood of unperturbed motion. The nonlinear problem of orbital stability is reduced to analysis of stability of a fixed point of the symplectic map generated by the equations of the perturbed motion. The coefficients of the symplectic map are determined numerically. Rigorous results on the orbital stability or instability of unperturbed motion are obtained by analyzing these coefficients. The orbital stability is investigated analytically in two limiting cases: small amplitude oscillations and rotations with large angular velocities when a small parameter can be introduced.  相似文献   

2.
A rigorous non-linear analysis of the orbital stability of plane periodic motions (pendulum oscillations and rotations) of a dynamically symmetrical heavy rigid body with one fixed point is carried out. It is assumed that the principal moments of inertia of the rigid body, calculated for the fixed point, are related by the same equation as in the Kovalevskaya case, but here no limitations are imposed on the position of the mass centre of the body. In the case of oscillations of small amplitude and in the case of rotations with high angular velocities, when it is possible to introduce a small parameter, the orbital stability is investigated analytically. For arbitrary values of the parameters, the non-linear problem of orbital stability is reduced to an analysis of the stability of a fixed point of the simplectic mapping, generated by the system of equations of perturbed motion. The simplectic mapping coefficients are calculated numerically, and from their values, using well-known criteria, conclusions are drawn regarding the orbital stability or instability of the periodic motion. It is shown that, when the mass centre lies on the axis of dynamic symmetry (the case of Lagrange integrability), the well-known stability criteria are inapplicable. In this case, the orbital instability of the periodic motions is proved using Chetayev's theorem. The results of the analysis are presented in the form of stability diagrams in the parameter plane of the problem.  相似文献   

3.
We deal with the problem of orbital stability of pendulum-like periodic motions of a heavy rigid body with a fixed point. We suppose that the geometry of the mass of the body corresponds to the Bobylev-Steklov case. Unperturbed motion represents oscillations or rotations of the body around a principal axis, occupying a fixed horizontal position. The problem of the orbital stability is considered on the basis of a nonlinear analysis.  相似文献   

4.
This paper is concerned with a nonautonomous Hamiltonian system with two degrees of freedom whose Hamiltonian is a 2π-periodic function of time and analytic in a neighborhood of an equilibrium point. It is assumed that the system exhibits a secondorder resonance, i. e., the system linearized in a neighborhood of the equilibrium point has a double multiplier equal to ?1. The case of general position is considered when the monodromy matrix is not reduced to diagonal form and the equilibrium point is linearly unstable. In this case, a nonlinear analysis is required to draw conclusions on the stability (or instability) of the equilibrium point in the complete system.In this paper, a constructive algorithm for a rigorous stability analysis of the equilibrium point of the above-mentioned system is presented. This algorithm has been developed on the basis of a method proposed in [1]. The main idea of this method is to construct and normalize a symplectic map generated by the phase flow of a Hamiltonian system.It is shown that the normal form of the Hamiltonian function and the generating function of the corresponding symplectic map contain no third-degree terms. Explicit formulae are obtained which allow one to calculate the coefficients of the normal form of the Hamiltonian in terms of the coefficients of the generating function of a symplectic map.The developed algorithm is applied to solve the problem of stability of resonant rotations of a symmetric satellite.  相似文献   

5.
We examine the motions of an autonomous Hamiltonian system with two degrees of freedom in a neighborhood of an equilibrium point at a 1:1 resonance. It is assumed that the matrix of linearized equations of perturbed motion is reduced to diagonal form and the equilibrium is linearly stable. As an illustration, we consider the problem of the motion of a dynamically symmetric rigid body (satellite) relative to its center of mass in a central Newtonian gravitational field on a circular orbit in a neighborhood of cylindrical precession. The abovementioned resonance case takes place for parameter values corresponding to the spherical symmetry of the body, for which the angular velocity of proper rotation has the same value and direction as the angular velocity of orbital motion of the radius vector of the center of mass. For parameter values close to the resonance point, the problem of the existence, bifurcations and orbital stability of periodic rigid body motions arising from a corresponding relative equilibrium of the reduced system is solved and issues concerning the existence of conditionally periodic motions are discussed.  相似文献   

6.
A constructive procedure is proposed for constructing equations of perturbed motion convenient for investigating the orbital stability of periodic motion in an autonomous Hamiltonian system with two degrees of freedom. An algorithm for normalizing these equations is described, and formulae for evaluating the coefficients of the normal form are presented. The results are used to investigate the stability of motion in certain special cases of the regular Grioli precession of a heavy rigid body with one fixed point.  相似文献   

7.
The linear stability problem of the rotational motion of a rigid body around a fixed point containing an inner cavity filled up with an ideal fluid is considered. In this paper, we also assume that the fluid is rotating. The effect of the angular velocities of the rigid body and the fluid in the stability problem is studied. The case of a cavity ellipsoidal is presented in detail.  相似文献   

8.
We construct smooth circle actions on symplectic manifolds with non-symplectic fixed point sets or cyclic isotropy sets. All such actions are not compatible with any symplectic form on the manifold in question. In order to cover the case of non-symplectic fixed point sets, we use two smooth 4-manifolds (one symplectic and one non-symplectic) which become diffeomorphic after taking the products with the 2-sphere. The second type of actions is obtained by constructing smooth circle actions on spheres with non-symplectic cyclic isotropy sets, which (by the equivariant connected sum construction) we carry over from the spheres on products of 2-spheres. Moreover, by using the mapping torus construction, we show that periodic diffeomorphisms (isotopic to symplectomorphisms) of symplectic manifolds can provide examples of smooth fixed point free circle actions on symplectic manifolds with non-symplectic cyclic isotropy sets.  相似文献   

9.
The motion of a spherical pendulum whose point of suspension performs high-frequency vertical harmonic oscillations of small amplitude is investigated. It is shown that two types of motion of the pendulum exist when it performs high-frequency oscillations close to conical motions, for which the pendulum makes a constant angle with the vertical and rotates around it with constant angular velocity. For the motions of the first and second types the centre of gravity of the pendulum is situated below and above the point of suspension, respectively. A bifurcation curve is obtained, which divides the plane of the parameters of the problem into two regions. In one of these only the first type of motion can exist, while in the other, in addition to the first type of motion, there are two motions of the second type. The problem of the stability of these motion of the pendulum, close to conical, is solved. It is shown that the first type of motion is stable, while of the second type of motion, only the motion with the higher position of the centre of gravity is stable.  相似文献   

10.
In this article we study a version of the Arnold conjecture for symplectic maps that are not Hamiltonian. That is, we give a lower bound for the number of fixed points such a map must have. We achieve the result for symplectic maps with sufficiently small Calabi invariant.  相似文献   

11.
The motion of a point mass, suspended on a spring in a uniform gravity field, is investigated. The spring is assumed to be weightless and to possess linear elasticity. Motion occurs in a specified fixed vertical plane. It is shown that a pendulum motion exists in which the angle, made by the axis of the spring and the vertical, varies uniformly with time. The problem of the orbital stability of this motion is solved.  相似文献   

12.
The sufficient conditions for the orbital stability of a periodic solution of the equations of motion of a Kovalevskaya gyroscope in the case of Bobylev-Steklov integrability are obtained.

It is difficult to expect Lyapunov stability for the unsteady motions of a heavy solid having a fixed point since a dependence of the vibrations frequency on the initial conditions is characteristic for the simplest of them, i.e. periodic motions /1/. Moreover, a rougher property of periodic solutions of the Euler-Poisson equations, orbital stability /2/, is not the subject of special investigations in the dynamics of a solid. The algorithm of the present investigation utilizes the treatment ascribed Zhukovskii /3/ of orbital stability as the Lyapunov stability of motion for a special selection of the variable playing the part of time (see /4/ also) and the Chetayev method /5/ of constructing Lyapunov functions from the first integrals of the equations of perturbed motion. This latter circumstance enables the Chetayev method to be put in one series with the methods used in /1, 4, 6–9/, etc.  相似文献   


13.
The problem of stability for a system of linear differential equations with coefficients which are periodic in time and depend on the parameters is considered. The singularities of the general position arising at the boundaries of the stability and instability (parametric resonance) domains in the case of two and three parameters are listed. A constructive approach is proposed which enables one, in the first approximation, to determine the stability domain in the neighbourhood of a point of the boundary (regular or singular) from the information at this point. This approach enables one to eliminate a tedious numerical analysis of the stability region in the neighbourhood of the boundary point and can be employed to construct the boundaries of parametric resonance domains. As an example, the problem of the stability of the oscillations of an articulated pipe conveying fluid with a pulsating velocity is considered. In the space of three parameters (the average fluid velocity and the amplitude and frequency of pulsations) a singularity of the boundary of the stability domain of the “dihedral angle” type is obtained and the tangential cone to the stability domain is calculated.  相似文献   

14.

The three-body problem with all the classical integrals fixed and all the symmetries removed is called the reduced three-body problem. We use the methods of symplectic scaling and reduction to show that the reduced planar or spatial three-body problem with one small mass is to the first approximation the product of the restricted three-body problem and a harmonic oscillator. This allows us to prove that many of the known results for the restricted problem have generalizations for the reduced three-body problem.

For example, all the non-degenerate periodic solutions, generic bifurcations, Hamiltonian-Hopf bifurcations, bridges and natural centers known to exist in the restricted problem can be continued into the reduced three-body problem. The classic normalization calculations of Deprit and Deprit-Bartholomé show that there are two-dimensional KAM invariant tori near the Lagrange point in the restricted problem. With the above result this proves that there are three-dimensional KAM invariant tori near the Lagrange point in the reduced three-body problem.  相似文献   


15.
A system of autonomous differential equations with a stable limit cycle and perturbed by small white noise is analyzed in this work. In the vicinity of the limit cycle of the unperturbed deterministic system, we define, construct, and analyze the Poincaré map of the randomly perturbed periodic motion. We show that the time of the first exit from a small neighborhood of the fixed point of the map, which corresponds to the unperturbed periodic orbit, is well approximated by the geometric distribution. The parameter of the geometric distribution tends to zero together with the noise intensity. Therefore, our result can be interpreted as an estimate of the stability of periodic motion to random perturbations. In addition, we show that the geometric distribution of the first exit times translates into statistical properties of solutions of important differential equation models in applications. To this end, we demonstrate three distinct examples from mathematical neuroscience featuring complex oscillatory patterns characterized by the geometric distribution. We show that in each of these models the statistical properties of emerging oscillations are fully explained by the general properties of randomly perturbed periodic motions identified in this paper.  相似文献   

16.
A famous theorem of Atiyah, Guillemin and Sternberg states that, given a Hamiltonian torus action, the image of the momentum map is a convex polytope. We prove that this result can be extended to the case in which the action is non-Hamiltonian. Our generalization of the theorem states that, given a symplectic torus action, the momentum map can be defined on an appropriate covering of the manifold and its image is the product of a convex polytope along a rational subspace times the orthogonal vector space. We also prove that this decomposition in direct product is stable under small equivariant perturbations of the symplectic structure; this, in particular, means that the property of being Hamiltonian is locally stable. The technique developed allows us to extend the result to any compact group action and also to deduce that any symplectic n-torus action, with fixed points, on a compact 2n-dimensional manifold, is Hamiltonian.  相似文献   

17.
In this paper, equations of motion for the problem of a ball rolling without slipping on a rotating hyperbolic paraboloid are obtained. Integrals of motions and an invariant measure are found. A detailed linear stability analysis of the ball’s rotations at the saddle point of the hyperbolic paraboloid is made. A three-dimensional Poincaré map generated by the phase flow of the problem is numerically investigated and the existence of a region of bounded trajectories in a neighborhood of the saddle point of the paraboloid is demonstrated. It is shown that a similar problem of a ball rolling on a rotating paraboloid, considered within the framework of the rubber model, can be reduced to a Hamiltonian system which includes the Brower problem as a particular case.  相似文献   

18.
New modified open Newton Cotes integrators are introduced in this paper. For the new proposed integrators the connection between these new algorithms, differential methods and symplectic integrators is studied. Much research has been done on one step symplectic integrators and several of them have obtained based on symplectic geometry. However, the research on multistep symplectic integrators is very poor. Zhu et al. [1] studied the well known open Newton Cotes differential methods and they presented them as multilayer symplectic integrators. Chiou and Wu [2] studied the development of multistep symplectic integrators based on the open Newton Cotes integration methods. In this paper we introduce a new open modified numerical method of Newton Cotes type and we present it as symplectic multilayer structure. The new obtained symplectic schemes are applied for the solution of Hamilton’s equations of motion which are linear in position and momentum. An important remark is that the Hamiltonian energy of the system remains almost constant as integration proceeds. We have applied also efficiently the new proposed method to a nonlinear orbital problem and an almost periodic orbital problem.  相似文献   

19.
We consider stochastic perturbations of expanding maps of the interval where the noise can project the trajectory outside the interval. We estimate the escape rate as a function of the amplitude of the noise and compare it with the purely diffusive case. This is done under a technical hypothesis which corresponds to stability of the absolutely continuous invariant measure against small perturbations of the map. We also discuss in detail a case of instability and show how stability can be recovered by considering another invariant measure.

  相似文献   


20.
In 1994, Jürgen Moser generalized Hénon’s area-preserving quadratic map to obtain a normal form for the family of four-dimensional, quadratic, symplectic maps. This map has at most four isolated fixed points. We show that the bounded dynamics of Moser’s six parameter family is organized by a codimension-three bifurcation, which we call a quadfurcation, that can create all four fixed points from none.The bounded dynamics is typically associated with Cantor families of invariant tori around fixed points that are doubly elliptic. For Moser’s map there can be two such fixed points: this structure is not what one would expect from dynamics near the cross product of a pair of uncoupled Hénon maps, where there is at most one doubly elliptic point. We visualize the dynamics by escape time plots on 2d planes through the phase space and by 3d slices through the tori.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号