首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supramolecular liquid-crystalline polyester complexes based on intermolecular hydrogen bonds between the carboxylic group and the pyridyl moieties was prepared by using non-liquid-crystalline H-donors, [3-chloro-4-(butyloxy)benzoic acid (2a), 3-chloro-4-(octyloxy)benzoic acid (2b), 3-chloro-4-(dodecyloxy)benzoic acid (2c) and 3-chloro-4-(tetradecyloxy)benzoic acid (2d)] and H-acceptor-polyester containing pyridyl units. Intermolecular hydrogen bond formation was confirmed by Fourier transform infrared spectroscopy. The liquid-crystalline behavior of the complex formed was established by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). The polyester complexes containing 2c and 2d donor components exhibit liquid crystalline mesophase and behave as side-chain liquid-crystalline polymers. Compared with unsubstituted parent acid, the presence of chloro group as a lateral substituent has a little negative effect on the induction of liquid crystallinity on the polyester complexes systems. The results show that the more stability of the obtained H-bonded complexes in comparison with analogues without 3-Cl substituents is due to the increased acidity of benzoic acid moiety.  相似文献   

2.
The cationic manganese tricarbonyl complexes containing η6-2-methylhydroquinone (2a), η6-2,3-dimethylhydroquinone (3a), η6-2-t-butylhydroquinone (4a), η6-tetramethylhydroquinone (5a) and η6-4,4′-biphenol (6a) are readily deprotonated to the corresponding neutral (η5-semiquinone)Mn(CO)3 (2b-6b) and anionic (η4-quinone)Mn(CO)3 (2c-5c) complexes. The X-ray structures of 2b-6b feature strong intermolecular hydrogen bonding interactions that result in the formation of supramolecular organometallic networks. Significantly, the substitution pattern at the semiquinone ring affects the stereochemistry of the hydrogen bonding interactions. NMR spectra of 2b, 3b and 5b reveal dynamic hydrogen bonding in solution.  相似文献   

3.
Crotonaldehyde resp. cinnamaldehyde react with guanidiniumchloride to give 2-amino-6-guanidinio-4-methyl-3.4.5.6-tetrahydro-1H-pyrimidiniumdichloride (4 a) resp. 6-hydroxy-4-phenylpyrimidiniumchloride3 b and the 4.6-dihydroxy-2.8-dimethyl (resp. 2.8-diphenyl)octahydropyrimido[1.2?a]pyrimidiniumchlorides6 a and6 b, resp. Action of 2.4-(or 2.6-)xylenol on4 a resp.3 b yields 2-amino-6-[2(or 4)-hydroxy-3.5-dimethylphenyl]-4-methyl-(resp. 4-phenyl)-3.4.5.6-tetrahydro-1H-pyrimidiniumchlorides (8 a resp.8 b or9 a resp.9 b), which are transformed to the zwitterionic compounds10 a–11 b by aqu. NaOH.6 a reacts with 2.4-xylenol to give the triazaoxabenzanthraceniumchlorid12 a·HCl (prove for the structure given for6 a). The chemical properties and the NMR-, UV-, mass- and IR-spectra of the compounds are discussed.  相似文献   

4.
The synthesis, mesomorphic behavior, and optical properties of two new series of metal complexes 1a,b-M (M=Pd, Cu, Zn) derived from benzoxazoles 2a,b are reported. The crystal and molecular structures of mesogenic 5-decyloxy-2-(6-decyloxybenzooxazol-2-yl)phenol and nonmesogenic bis[5-octyloxy-2-(6-octyloxybenzooxazol-2-yl) phenol]Pd(II) were determined by means of X-ray structural analysis. Two benzoxazoles 2a exhibited monotropic SmA phases, and all benzoxazoles 2b were nonmesogenic. On the other hand, metal complexes 1a-M exhibited distinctly different mesomorphism from complexes 1b-M. Complexes 1a-Pd formed SmC phases; complexes 1a-Cu and 1a-Zn formed crystal phases. In contrast, complexes 1b-Zn exhibited columnar phases, and complexes 1b-Cu and 1b-Pd were nonmesogenic. The difference of the mesomorphism in 1a-M and 1b-M was probably attributed to the geometry and/or the overall molecular shape created by 2a and 2b. The electronic configuration of metal ion might play an important role in forming the mesophases. The fluorescent properties of these compounds were also examined.  相似文献   

5.
Two new α-diimine containing Ni(II) complexes, {bis[N,N′-(2,6-dimethyl-4-naphthylphenyl)imino]-1,2-dimethylethane}dibromonickel 3a and {bis[N,N′-(2-methyl-4-naphthylphenyl)imino]-1,2-dimethylethane}dibromonickel 3b were synthesized and characterized. The crystal structures of representative ligand 2a and its complex 3a were determined by X-ray crystallography. Complex 3a bearing 2,6-dimethyl and 4-naphthyl groups, activated by diethylaluminum chloride (DEAC), shows high catalytic activity for the polymerization of ethylene [4.43 × 106 g PE/(mol Ni h bar)]. Interestingly, complexes 3a and 3b bearing the naphthyl substituent in the para-aryl position produced dendritic polyethylenes (branching degree, 3a: 112, 118, and 147; 3b: 113, 127, and 151 branches/1,000 C at 20, 40, and 60 °C, respectively). The dendritic polyethylene particle size obtained by 3a and 3b/DEAC can be controlled in the 1–20 nm range under low ethylene pressure (diameter, 3a: 18.31, 14.44, and 11.09; 3b: 12.29, 8.98 and 6.27 nm at 20, 40, and 60 °C, respectively) and could be expected to produce a nano-targeted drug carrier after modification with water-soluble oligo(ethylene glycol).  相似文献   

6.
The synthesis of a series of chiral Pd(L)PyBr2 (3a3e) and Pd(L)PyCl2 (4d and 4e) complexes from l-phenylalanine is presented (L = (S)-3-allyl-4-benzyl-1-(2,6-diisopropylphenyl)-imidazolin-2-ylidene (a), (S)-4-benzyl-1-(2,6-diisopropylphenyl)-3-(naphthalen-2-ylmethyl)imidazolin-2-ylidene (b), (S)-4-benzyl-3-(biphenyl-4-ylmethyl)-1-(2,6-diisopropylphenyl)imidazolin-2-ylidene (c), (S)-4-benzyl-1-(2,6-diisopropylphenyl)-3-(naphthalen-1-ylmethyl)imidazolin-2-ylidene (d) or (S)-4-benzyl-1-(2,6-diisopropylphenyl)-3-(2,4,6-trimethylbenzyl)imidazolin-2-ylidene (e). The complexes were characterized by physicochemical and spectroscopic methods, and the X-ray crystal structures of 3a3c and 4d are reported. In each case, there is a slightly distorted square-planar geometry around palladium, which is surrounded by imidazolylidene, two trans halide ligands and a pyridine ligand. There are π–π stacking interactions in the crystal structures of these complexes. Complex 3a showed good catalytic activity in the Cu-free Sonogashira coupling reaction under aerobic conditions.  相似文献   

7.
Oxidation of the α- and β-4-phenyl-1,2,4-triazolin-3,5-dione adducts of vitamin D3 (2 and1) withMCPBA yields two diastereomeric mixtures of the (5,10)-(7,8)-dioxiranes3 a,3 b,3 c and4 a,4 b respectively. The corresponding benzoates5 a,5 b,6 a and6 b were prepared and the X-ray crystal structure of5 b was determined. This analysis proved5 b to be the (5R, 1 OS)-(7R, 8R)-dioxirane of the β-resp. (6S)-4-phenyl-1,2,4-triazolin-3,5-dione adduct1 of vitamin D3.  相似文献   

8.
A series of pyridofuro compounds were synthesized from 4-(4-chlorophenyl)-1,2-dihydro-2-oxo-6-(thiophen-2-yl)pyridine-3-carbonitrile (1) as starting material. Alkylation of 1 with ethyl bromoacetate gave the corresponding ester 2, which was condensed with hydrazine hydrate to afford the corresponding acid hydrazide derivative 3. Thrope-Ziegler cyclization of 2 with sodium methoxide gave furo[2,3-b]pyridine derivative 4, which was reacted with thiosemicarbazide, allyl isothiocyanate, formamide or hydrazine hydrate to give furopyridine derivatives 5–8, respectively. The latter compound 8 was cyclized with acetylacetone or formic acid to give the corresponding compounds 9 and 10, respectively. Furthermore, sulfurization of 1 with P2S5 gave the corresponding thioxopyridine 11, which was reacted with glycosyl (or galactosyl) bromide, morpholine or piperidine to give the corresponding thioglycoside 12a,b and Mannich base 14a,b derivatives. The deacetylation of 12a,b gave the corresponding deacetylated thioglycosides 13a,b, respectively. All the newly synthesized compounds were characterized by the elemental analyses and spectroscopic evidences (IR, 1H- and 13C NMR).  相似文献   

9.
A series of new benzo-15-crown-5 derivatives (16) containing formyl and imine groups were prepared. New formyl crown ethers (1 and 2) were prepared by reaction of 4′,5′-bis(bromomethyl)benzo-15-crown-5 with 2-hydroxy-3-methoxybenzaldehyde (o-vanillin) and 2-hydroxy-5-methoxybenzaldehyde in the presence of NaOH. New Schiff bases (36) were synthesized by the condensation of corresponding aldehydes with 1,3-diaminopropane and 1,4-diaminobutane. Sodium and potassium complexes (1a6a and 1b6b) of the crown compounds forming crystalline complexes of 1:1 (Na+:ligand) and 1:2 (K+:ligand) stoichiometries were also synthesized. The structures of the aldehydes 1 and 2, imines 36 and complexes (1a3a and 1b3b) were confirmed on the basis of elemental analyses, IR, 1H- and 13C-NMR, and mass spectroscopy.  相似文献   

10.
The cytotoxic properties of four synthesized coumarin derivatives containing 4-bromophenyl or anthracene moieties against the human hepatocellular carcinoma cell lines (HepG-2) were investigated in vitro by use of the sulforhodamine B (SRB) assay. The four coumarin derivatives are 3-(4-bromophenyl)-benzo[5,6]coumarin (1a), 3-(4-bromophenyl)-7-(N,N-diethylamino)coumarin (1b), 3-(4-(anthracen-10-yl)phenyl)-benzo[5,6]coumarin (2a), and 3-(4-(anthracen-10-yl)phenyl)-7-(N,N-diethylamino)coumarin (2b). The preliminary results indicate that 1a, 2a, and 2b have significant cytotoxicity against HepG-2 whereas 1b has a growth-promotion effect.  相似文献   

11.
The crystal structures of nitrato-{4-bromo-2-[2-hydroxyethylimino)methyl]phenolo}-(3,5-dibromopyridine)copper (I) and nitrato-{2,4-dibromo-6-[(2-hydroxyethylimino)methyl]phenolo}-(3,5-dibromopyridine)copper (II) are determined. The crystals of compound I are orthorhombic: a = 14.157(3) Å, b = 15.420(3) Å, c = 17.494(4) Å, space group Pbca, Z = 8, R = 0.067. The crystals of compound II are monoclinic: a = 10.675 Å, b = 13.973 Å, c = 14.007 Å, β = 111.92°, space group P21/n, Z = 4, R = 0.0464. In the structures of compounds I and II, the copper atom coordinates, correspondingly, singly deprotonated 4-bromo-2-[(2-hydroxyethylimino)methyl]phenol and 2,4-dibromo-6-[(2-hydroxyethylimino)methyl]phenol molecules, and 3,5-dibromopyridine, and the nitrate ion. The coordination polyhedron of the copper ion in complexes I and II is a slightly distorted tetragonal pyramid. The bases of the pyramids are formed by the imine and pyridine nitrogen atoms and the phenolic and alcoholic oxygen atoms, and the axial vertices are occupied by the oxygen atoms of the monodentate nitrato groups. In the complexes under study, the six-membered metallocycles have asymmetric gauche conformation. In crystal, complexes I are united, due to the slip plane a, through bifurcate hydrogen bonds into infinite chains along the direction [100]. Complexes II in crystal form two-dimensional networks by means of hydrogen bonds.  相似文献   

12.
3-Amino-4-(tert-butyl-NNO-azoxy)furoxan (1a) and 4-amino-3-(tert-butyl-NNO-azoxy)-furoxan (1b) and their acetyl derivatives 6a,b were obtained. The equilibria 1a ai 1b and 6a ? 6b were studied. Furoxan 6b can undergo thermal rearrangement into 3-[(tert-butyl-NNO-azoxy)(nitro)methyl]-5-methyl-1,2,4-oxadiazole (7), prolonged heating of which gives N-(2-tert-butyl-5-nitro-1-oxido-2H-1,2,3-triazol-4-yl)acetamide (8). With the transformation 78 as an example, the possibility of participation of the azoxy group in the Boulton-Katritzky rearrangements was demonstrated for the first time.  相似文献   

13.
Three series of copper(II) complexes 1a-1c derived from unsymmetric pyrazoles 2a-2c were prepared and their mesomorphic properties investigated. The mesomorphic behavior of compounds was studied by differential scanning calorimetry, polarizing optical microscopy, and powder X-ray diffractometry. The crystal and molecular structures of mesogenic copper complex (2a; n=10) of 3-[4-decyloxyphenyl]-1H-pyrazole were determined by means of X-ray structural analysis. It crystallizes in the triclinic space group P-1, with a=4.0890(1) Å, b=18.0167(2) Å, c=25.5015(5) Å, and Z=2. The geometry at copper center was not perfectly square planar. A weak intermolecular H-bond (d=2.36 Å) between Cl1 and H2 atoms and π-π interaction (ca. 3.45-3.55 Å) was also observed. All their precursors 2a-2c were not mesogenic. In contrast, copper complexes 1a formed nematic or smectic C phases and complexes 1b-1c formed crystalline phases. Powder X-ray diffraction experiments confirmed the presence of SmC phase.  相似文献   

14.
Reaction of enamines1 a–e with cyanoacetic acids2 a,b in acetic anhydride at about 100°C yields the α-cyanoacetylated enamines3 a–g. Under the same conditions methyl 4-cyano-2-(2-pyridyl)-acetoacetate3 h is obtained from methyl 2-pyridylacetate and2 a. Compounds3 are cyclized in hydrochloric acid yielding the 4-hydroxy-2-pyridones4; on the other hand in ethanolic sodium ethoxide solution the 2-amino-4-pyridones are obtained. The esters5 a,b andd are saponified to give the acids7 a–c which decarboxylate at 250°C to8 a–c.  相似文献   

15.
<正>1 General procedure for the preparation of 3-substituted glutaronitriles To a 100 mL flask containing aldehyde(30 mmol) and cyanoacetic acid(10.20 g, 120 mmol) was added 4-methylpiperidine(0.4 mL) and 23 mL N-methylmorpholine. The reaction mixture was warmed to mild reflux for 24 h and then cooled to room temperature and concentrated on a rotary evaporator. The resulting mixture was dissolved in 100  相似文献   

16.
Guest inclusion properties of two cyclic imides which have carboxylic acids connected through flexible tether, namely, 4-(1,3-dioxo-1,3-dihydro-isoindol-2-ylmethyl)-cyclohexanecarboxylic acid (1) and 4-(1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-ylmethyl)-cyclohexanecarboxylic acid (2) are studied. The crystals of host 1 containing one molecule of 1, the crystals of 4,4′-bipyridine (bpy) cocrystal of 1 containing one molecule of 1 and half molecule of bpy (1a), the crystals of 1,4-dioxane solvate of 1 containing two molecule of 1 and one and half molecule of 1,4-dioxane (1b) and the crystals of quinoline solvate of 1 containing one molecule of 1 and one molecule of quinoline (1c) in their crystallographic asymmetric units are investigated. Intermolecular hydrogen bonded two dimensional (2D) sheet structure of 1 and 3D channel network of 1b are comprised of cyclic R 2 2 (8) hydrogen bond motifs; whereas cleavage of dimeric carboxylic acid R 2 2 (8) motifs occurs in the structures of 1a and 1c in which 3D host–guest networks are comprised of discrete O–H···N and cyclic R 2 2 (7) interactions, respectively. Various types of weak interactions between the two symmetry nonequivalent host molecule are found to be responsible for the formation of channels (14 × 11 Å) filled by guest 1,4-dioxane molecules in the crystal lattice of 1b. Two different solvates of 2 containing one molecule of 2 with a water molecule (2a) and one molecule of 2 with a quinoline molecule (2b) in their crystallographic asymmetric units, respectively, are also crystallized in different space groups. The quinoline molecules are held with host molecules by discrete O–H···N and C–H···O interactions and reside inside the voids formed by 3D repeated hexameric assemblies of host molecules in the crystal lattice of 2b.  相似文献   

17.
Bromination of 1-benzyl-4-methyl-3.4-dihydro-2(1H)-pyrimidinone (9 a) with 1 mole Br2 in CHCl3 yields 1-benzyl-5-bromo-6-hydroxy-4-methyltetrahydro-2(1H)-pyrimidinone,12 a, or the 6-ethoxypyrimidinone13 a, according to whether H2O orEtOH is used in working up. With 2 moles Br2,9 a analogously affords the 5.5-dibromopyrimidinnes14 a or15 a. Bromination of the 6-hydroxypyrimidinone10 a yields the same products,12 a and13 a, or14 a and15 a respectively, while the 4-phenyl-pyrimidinones9 b and11 b yield the corresponding 5-bromo-and 5.5-dibromopyrimidinones13 b and15 b. The structures of the compounds12 a-15 b are confirmed by their NMR data and chemical properties: the oxopyrimidinylmethylureas16 a and17 a are formed by the action of methylurea on12 a and13 a, or on14 a and15 a respectively; with hexamethylenetetramine,12 a reacts to give the 5.6-dihydroxypyrimidinone18 a, while13 b is transformed to the 4-phenylpyrimidinone19 b. 13 b was also synthesized from α-bromocinnamaldehyde. The mechanism of bromination is discussed.  相似文献   

18.
The new pyrazole ligand 5-(2-hydroxyphenyl)-3-methyl-1-(2-pyridylo)-1H-pyrazole-4-phosphonic acid dimethyl ester (2a) has been used to obtain a series of platinum(II), palladium(II) and copper(II) complexes (3a7a) as potential anticancer compounds. The molecular structures of the platinum(II) and copper(II) complexes 3a and 6a have been determined by X-ray crystallography. The cytotoxicity of the phosphonic ligand 2a and its carboxylic analog 2b as well as their complexes has been evaluated on leukemia and melanoma cell lines. Copper(II) complexes were found to be more efficient in the induction of melanoma cell death than the platinum(II) or palladium(II) complexes. Cytotoxic effectiveness of compound 7b against melanoma WM-115 cells was two times better than that of cisplatin. The reaction of compound 5b with 9-methylguanine has been studied.  相似文献   

19.
A series of new compounds bearing a 1,3-benzothiazol-2-one nucleus have been synthesized using 5,6-dimethyl-3-(2-oxo-propyl)-1,3-benzothiazol-2-one (1) as a key starting compound. The reaction of 1 with some nucleophilic compounds led to the formation of compounds 2, 3, 4, 5a, b, 6 and 7a, b. The thiosemicarbazone derivatives 7a, b were treated with a number of halo ketones to produce the new heterocyclic compounds 913, while their reaction with acid anhydrides led to the formation of the derivatives 14 and 15. Also, compound 1 was condensed with different aromatic aldehydes to afford the corresponding chalcones 1822. The structures of all the novel compounds have been determined by analytical and spectral data. Some of the compounds were selected to be evaluated as anti-inflammatory and analgesic agents.  相似文献   

20.
Thed,l-(1a) andmeso-forms (1b) of α,α'-dihydroxy-α,α'-dimethyladipic acid, dilactone (3), diiminodilactone (4), and lactonolactam (5) were obtained by the reaction of acetonylacetone with KCN and HCl. The transformations of1 to the esters2, dilactone3 to la, and diiminodilactone4 to dilactone3 were studied. It was shown that3 can be readily obtained from la by thermolysis, acid catalysis, and DCC action as well as by acid catalyzed cyclization of2a, while dilactone3 can be obtained from1b and2b in negligible yield only under drastic conditions, obviously, due to the partial epimirization of themeso-forms. The mild thermolysis of1b leads totrans-lactonoacid (6), from which the ester7 has been obtained. The effective acid catalyzed cyclization of amides8 and9 to3, lactamoamide12 to5, and amide14 to model lactone13 was found. The NMR spectra of the products were studied, and a1H NMR test was suggested for identification ofd,l- andmeso-forms1 and2. The stereochemistry of monolactones6, 7, 9, 10a, 10b, 11, and dilactone3 was established. The differences in the chemical behavior of α,α'-dihydroxyglutaric and adipic acids were explained by the significant reduction of the non-bonded interactions of the substituents in the corresponding monolactones during the transfer from 1,3- to 1,4-substituted systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号