首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
为了进一步提高等离子体激励器控制能力,采用粒子图像测速仪技术,以介质阻挡放电等离子体激励器为研究对象,开展了有、无来流条件下等离子体诱导启动涡的实验研究,获得了来流对启动涡发展演化及生存时间的影响.与传统非对称布局介质阻挡放电等离子体激励器相比,本文采用整个平板金属模型作为植入电极的对称布局方式开展研究.在金属模型表面粘贴聚酰亚胺胶带作为绝缘介质.将铜箔作为暴露电极沿平板展向布置,使激励器诱导气流沿流向方向.研究结果表明:对称布局式激励器会在暴露电极两侧产生一对方向相反的启动涡.在顺流向方向,来流加速了启动涡的破碎;在逆来流方向,来流延长了启动涡的生存时间,从而增加了激励器的掺混能力.该布局激励器具有掺混及射流效应两种能力,为提高等离子体激励器在高风速或高雷诺数下的控制效果积累了技术基础.  相似文献   

2.
车学科  聂万胜  周朋辉  何浩波  田希晖  周思引 《物理学报》2013,62(22):224702-224702
使用粒子激光图像测速技术对亚微秒脉冲激励表面介质阻挡放电激励器连续产生诱导漩涡进行了实验研究, 给出了包含脉冲重复频率和漩涡频率的双频率激励模式的具体形式. 实验过程中出现了原发型与继发型两类示踪粒子空白区, 前者由放电释热的微爆炸作用造成, 使得诱导流动远离壁面, 能够减小壁面摩擦阻力的作用; 以暴露电极左侧继发型空白区被完全吹除作为重复启动激励的临界点. 为提高控制效果应采用尽可能高的脉冲重复频率, 漩涡时间内脉冲数量应大于10, 最大诱导速度随脉冲数量增大而增大, 但动量传递效率降低. 使用亚微秒脉冲激励具备释热、体积力两种作用机理. 关键词: 双频率亚微秒脉冲 表面介质阻挡放电 连续漩涡  相似文献   

3.
利用介质阻挡放电装置.在低气压空气中得到了均匀放电,并采用光谱法,研究了放电等离子体温度的空间均匀性.实验采集了氮分子光谱,采用氮分子第二正带系C3Ⅱu→B3Ⅱg计算振动温度;采用氮分子离子第一负带系计算转动温度(气体温度).实验发现,振动温度随电压增加而减小,而转动温度随电压增加而增大.等离子体振动温度和转动温度在空...  相似文献   

4.
利用平面激光诱导荧光技术对交错电极介质阻挡放电过程中产生的痕量组分NO进行了检测. 通过数值模拟对实验结果进行了分析说明,并对介质阻挡放电等离子体流动控制原理进行了简要分析. 此外还通过平面激光诱导荧光技术对等离子体诱导流动进行了直观显示. 关键词: 平面激光诱导荧光 等离子体 介质阻挡放电  相似文献   

5.
本文通过2D PIV及其CCD相机获取锯齿电极等离子体激励器在静态环境下诱导的流场结构以及放电图像。CCD相机拍摄的放电图像显示该激励器在锯齿中间存在一暗带区域,而不同截面的流场结果则验证了该型激励器能够诱导出带涡对三维射流结构,涡对贴近壁面向下游发展,并在激励器壁面上方诱导出下洗流。文中结合各拍摄截面的流场结构以及放电结构,分析了该型激励器诱导的流场结构特性,涡对发展规律和形成原因,以及锯齿电极激励器的放电特性,最后提出了其流场诱导机理模型。  相似文献   

6.
在超音速风洞中进行了等离子体气动激励改变激波系结构的实验,考察了介质阻挡放电和横向直流放电对于激波系结构的影响。实验结果表明介质阻挡放电所产生的等离子体能够影响流场附面层。采用逆气流DBD放电后,激波强度略有增大;采用顺气流放电后,激波强度略有减弱。相对于介质阻挡放电,横向直流放电对减弱激波强度影响稍大。  相似文献   

7.
采用粒子图像测速仪对介质阻挡放电等离子体在静止流场中诱导出的速度场、等离子体激励对平板附面层的改变进行了研究.实验结果表明,等离子体激励作用主要集中在近壁面附近;激励电压与诱导速度近似为线性关系,激励频率对诱导速度的影响不大.将等离子体流动控制原理初步归纳为撞击效应和热效应,并通过数值模拟的方法研究了热效应对等离子体激励诱导速度场的影响.数值模拟结果表明,在无来流的情况下等离子体热效应对流场的影响比较明显,使局部水平方向速度大小提高近30%.简要介绍了提高等离子体激励强度的方法. 关键词: 介质阻挡放电等离子体 流动控制 边界层  相似文献   

8.
采用平行平板结构的微间隙介质阻挡放电装置,在锯齿波电压激励下产生了电流波形具有平台状的阶梯模式放电。研究发现,随锯齿波电压峰值的增大,放电平台的持续时间和幅值随之增加。采用光学方法对单个放电平台的时间演化进行研究,发现其放电机制属于大气压汤森放电。通过对放电的发射光谱进行采集,发现包含氮分子的第二正带系(C~3Π_u→B~3Π_u)、OH(A~2∑~+→X~2Π)和ArⅠ的特征谱线。随锯齿波电压峰值的增大,OH(308.8 nm)谱线强度和分子振动温度增加,但电子激发温度减小。通过对ArⅠ(750.4 nm)强度进行比较,发现相同峰值电压下锯齿波激励介质阻挡放电比正弦激励介质阻挡放电产生的谱线强度更大。利用气体放电理论,对上述物理现象进行了定性解释。  相似文献   

9.
大气压介质阻挡辉光放电中放电电流的测量与分析   总被引:1,自引:1,他引:0  
介质阻挡放电产生的低温等离子体具有广泛的应用前景而成为研究热点。文章利用平行平板介质阻挡放电装置,在流动的氦气中实现了大气压均匀辉光放电,得到了大气压下的均匀等离子体。利用电学方法将放电电流从总电流中分离出来,从而得到了辉光放电的放电电流。通过分析放电电流、外加电压、气隙上电压以及壁电荷电量之间的相互关系,可以研究气体放电过程中壁电荷积累的微观动力学行为。实验结果表明壁电荷主要是在放电电流脉冲持续期间积累的,但电流脉冲结束后,由于气隙电压没有改变极性,壁电荷还会逐渐积累,气隙电压改变极性后,壁电荷量随时间减小。这些结果对壁电荷在介质阻挡辉光放电中作用的深入研究和大气压介质阻挡辉光放电的工业应用具有重要意义。  相似文献   

10.
李雪辰  常媛媛  刘润甫  赵欢欢  狄聪 《物理学报》2013,62(16):165205-165205
利用三电极介质阻挡放电装置, 在主放电区产生了较大体积的大气压空气均匀放电. 利用光学与电学方法, 对主放电特性进行了研究, 发现随驱动功率的不同, 主放电存在等离子体羽和等离子体柱两种模式, 等离子体羽的击穿电压随外加电压峰值的增加而减小. 利用光电倍增管对两种放电模式进行了空间分辨测量, 发现等离子体羽是以发光光层的形式传播, 而等离子体柱是连续放电. 通过采集两种放电的发射光谱, 对其振动温度和转动温度进行了测量. 发现两种放电模式的振转温度均随着Up的增大而降低. 关键词: 介质阻挡放电 等离子体羽 等离子体柱 发射光谱  相似文献   

11.
 主要针对介质阻挡放电等离子体改变激波系结构展开了实验研究。验证了介质阻挡放电等离子体气动激励能够对边界层施加影响,顺气流放电时能减小激波强度,逆气流放电时能增大激波强度。逆气流放电时,3组电极放电与4组电极放电比较,3组电极放电时压比更高。由于在该实验中放电区域比边界层小得多,介质阻挡放电产生的体积力远小于高速来流条件下的气动力,因此对激波的作用效果十分微弱。  相似文献   

12.
主要针对介质阻挡放电等离子体改变激波系结构展开了实验研究。验证了介质阻挡放电等离子体气动激励能够对边界层施加影响,顺气流放电时能减小激波强度,逆气流放电时能增大激波强度。逆气流放电时,3组电极放电与4组电极放电比较,3组电极放电时压比更高。由于在该实验中放电区域比边界层小得多,介质阻挡放电产生的体积力远小于高速来流条件下的气动力,因此对激波的作用效果十分微弱。  相似文献   

13.
赵凯  牟宗信  张家良 《物理学报》2014,63(18):185208-185208
大气压介质阻挡放电(DBD)可以在常压下产生非平衡等离子体,已经成为热点研究领域.通过脉冲或交变电源激发放电,研究电源输出特性、电源与放电发生器负载间的匹配和外界条件对放电的影响对于理解放电现象和提高放电效率具有重要意义.本文采用Lissajous图形法,分别研究了驱动电压、气流速率等因素影响同轴DBD发生器介质层等效电容及负载幅频特性的规律.结果表明,气流速率和驱动电压等外界条件影响DBD发生器的负载特性:介质层等效电容随气流速率增大而减小,随驱动电压增大而增大;幅频特性曲线均表现出RLC回路谐振现象,谐振频率随气流速率增大而增大,随驱动电压增大而减小.通过对比发现,介质层等效电容随频率的变化曲线与幅频特性曲线具有一致的特征,介质层等效电容是影响电路谐振频率动态变化的主要因素.提出了一种有关介质层等效电容的形成机制.  相似文献   

14.
等离子体气动激励机理数值研究   总被引:4,自引:0,他引:4       下载免费PDF全文
程钰锋  聂万胜  李国强 《物理学报》2012,61(6):60509-060509
基于介质阻挡与准直流电弧放电的物理过程, 分析了它们的气动激励机理, 建立了各自的气动激励模型, 并分别研究了它们对低速和超声速流动的激励效果. 结果显示: 介质挡板放电等离子体气动激励机理是改变了连续流体中的三种力, 即由牛顿内摩擦引起的剪切应力、由电动力学引起的体积力及由压力突变引起的冲击力, 其中基于电动力学的体积力效应占主导地位; 临近空间环境中体积力的作用效果更强, 诱导速度更大; 超声速来流下准直流电弧放电气动激励机理主要是等离子体的热阻塞效应, 本文所建立的爆炸丝传热模型可以用于仿真其控制激波的过程; 热电弧对于超声速来流而言就像一个具有一定斜坡角度的虚拟突起, 可用于高超声速飞行器前体激波的控制.  相似文献   

15.
常压窄间隙介质阻挡放电等离子体辐射特性   总被引:1,自引:0,他引:1  
利用带有透明电极与可测向观察的一个介质阻挡放电(DBD)实验装置对它的常压窄间隙等离子体辐射特性进行了实验研究。结果表明:这一DBD装置的辐射特性会受激励电压、激励频率、DBD结构等多种因素影响。在频率为10~20kHz高压电源激励下,采用窄间隙、薄电介质层结构DBD可以大幅度提高放电空间的电场强度,增加放电功率密度,提高了放电装置性能。  相似文献   

16.
A 16 kHz power supply was used to investigate the preparation of hydrophobic film on glass surface by means of atmospheric pressure dielectric barrier discharge (DBD). Air nonthermal plasma was induced between the two parallel electrodes with a glass plate as dielectric barrier. The process for hydrophobic film includes two parts: one is plasma pretreatment to produce active layer on glass surface, another is to form hydrophobic film on glass surface by means of the interaction between air plasma and polydimethylsiloxane oil. The surface changes were observed using contact angle measurement and atomic force microscope. The results show DBD can increase surface roughness, and effectively improve glass surface activation and form a hydrophobic coating on glass surface, and it is possibility to prepare hydrophobic glass with middle frequency power supply.  相似文献   

17.
文章利用CFD软件FLUENT中的自定义函数接口, 将等离子体对中性气体的激励作用模型化为体积力引入Navier-Stokes方程, 研究了等离子体气动激励诱导的平板射流, 以及介质阻挡放电(dielectric barrier discharge, DBD)等离子体激励对NACA0015翼型大迎角分离流的控制作用.计算分析表明, 多对电极等离子体激励器可以有效控制NACA0015翼型大迎角分离流动.   相似文献   

18.
常压介质阻挡放电等离子体发射光谱的检测分析   总被引:1,自引:1,他引:0  
以常压介质阻挡放电等离子体作为研究对象,在常温常压条件下使用介质阻挡放电光谱诊断装置,得到N2第二正系跃迁和Ar原子发射谱线。通过对放电光谱的检测分析,可以察知常压介质阻挡放电等离子体的特性,并可运用同一元素谱线的相对强度来诊断电子激发温度等物理参量,以达到对材料表面改性过程的实时监控,工作的结果对常压介质阻挡放电及其在材料改性的应用中具有重要的意义。  相似文献   

19.
为了提高共面介质阻挡放电(DBD)的真空紫外线(VUV)辐射效率,采用流体模型研究了Ne/Xe混合气体的压强及Xe含量对DBD真空紫外辐射特性的影响。数值模拟结果表明:在一定的放电电压下,增加Xe的含量或气体压强,147nm的真空紫外辐射效率明显下降,但173nm真空紫外辐射效率得到了较大的提高,即总的VUV辐射效率有较大的提高;气压过高会降低VUV辐射总量(发光亮度)。  相似文献   

20.
雷枭  方志  邵涛  章程 《强激光与粒子束》2012,24(05):1206-1210
采用自行研制的低造价、小体积、可产生幅值0~35 kV、重复频率1 kHz的高压s脉冲电源,设计了一套以大气压氖气为工作气体的介质阻挡放电(DBD)等离子体射流源,通过测量并计算放电过程中的电压-电流波形、拍摄放电图像、光谱分析等手段,对电压幅值、气体流速对氖气等离子体射流特性的影响进行了研究。结果表明:s脉冲电源激励下大气压氖气DBD能产生锥状的等离子射流且其等离子强度适中;s脉冲电源电压幅值的快速上升,可在放电空间瞬间施加高的过电压,能有效促进放电功率、电子密度、电子激发温度和射流长度的增加;工作气体流速的增加使得放电功率、电子激发温度和电子密度减小,而射流长度变化很小;一定条件下,能形成长距离的射流。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号