首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The development of solution-processable europium-complex based organic light-emitting diodes (OLED) has been limited by their low efficiency. In this paper, we show that it is possible to produce a highly efficient, solution-processable, europium-complex based OLED with an external quantum efficiency of 4.3% at a brightness of 100 Cd/m2 using off-the-shelf materials and without any specific optical design for improved light extraction. This is achieved by optimizing the device structure and the host matrix used. To our knowledge, this is the highest efficiency reported for solution-processable europium-complex based OLED devices, and the efficiency roll-off has been reduced compared with other reported europium-complex based devices. Our approach should be applicable to a wide range of solution-processable lanthanide complexes.  相似文献   

2.
Efficient red, orange, green and blue monochrome phosphorescent organic light-emitting diodes (OLEDs) with simplified structure were fabricated based on ultrathin emissive layers. The maximum efficiencies of red, orange, green and blue OLEDs are 19.3 cd/A (17.3 lm/W), 45.7 cd/A (43.2 lm/W), 46.3 cd/A (41.6 lm/W) and 11.9 cd/A (9.2 lm/W). Moreover, efficient and color stable white OLEDs based on two complementary colors of orange/blue, three colors of red/orange/blue, and four colors of red/orange/green/blue were demonstrated. The two colors, three colors and four colors white OLEDs have maximum efficiencies of 30.9 cd/A (27.7 lm/W), 30.3 cd/A (27.2 lm/W) and 28.9 cd/A (26.0 lm/W), respectively. And we also discussed the emission mechanism of the designed monochrome and white devices.  相似文献   

3.
具有凹凸界面结构的有机发光器件的性能研究   总被引:1,自引:0,他引:1  
通过采用毫米尺度的凹凸界面结构实现了有机发光器件(Organic Light Emitting Device,OLED)发光效率的提高。在制备OLED器件过程中使用双狭缝模板,在发光层的界面处构建了高度为10nm的凸起,获得最大功率效率为23.9lm/W,最大电流效率为45.6cd/A,与传统的平直界面的OLED相比,分别提高了70%和36%。经过实验数据分析与理论模拟得出初步结论:OLED发光效率提高主要归因于金属界面处局域表面等离子体共振激发,提高了金属阴极界面的远场散射,从而提高OLED的出光效率;另外适当凹凸深度也改善了器件的电学性能。  相似文献   

4.
Although both high-index substrates and horizontal-dipole emitters have been shown to be facile approaches for enhancing OLED (organic light emitting diode) light extraction, the full benefits and potential of their combination for OLED optical out-coupling have not been thoroughly studied and explored. Simulation studies indicate that very high optical coupling efficiency into substrates ϕsub (and perhaps similarly high OLED external quantum efficiencies) of ~90% can be possibly obtained with both high-index substrates (refractive index >1.8–1.9) and highly horizontal-dipole emitters (horizontal dipole ratio >85%), together with adoption of low-index or index-matching carrier transport layers and optimization of organic layer and transparent electrode thicknesses. With these judicious device design conditions, all waveguided modes and surface plasmon modes in devices can be effectively suppressed for optimal optical out-coupling. Finally, combining the sapphire substrate having high index of n~1.78, the recently developed OLED emitters having high horizontal emitting dipole ratio of up to 87%, and simple external extraction lens, OLED devices having external quantum efficiency of over 80% was successfully realized.  相似文献   

5.
The technology of white organic light-emitting diodes (WOLEDs) is attracting growing interest due to their potential application in indoor lighting. Nevertheless the simultaneous achievement of high luminous efficacy (LE), high color rendering index (CRI), very low manufacturing costs and compatibility with flexible thin substrates is still a great challenge. Indeed, very high efficiency devices show usually low values of CRI, not suitable for lighting applications, and use expensive indium tin oxide (ITO) electrodes which are not compatible with low cost and/or flexible products. Here we show a novel low cost ITO-free WOLED structure based on a multi-cavity architecture with increased photonic mode density and still broad white emission spectrum, which allows for simultaneous optimization of all device characteristics. Without using out-coupling optics or high refractive index substrates, CRI of 85 and LE as high as 33 lm W−1 and 14 lm W−1 have been demonstrated on ITO-free glass and flexible substrates, respectively.  相似文献   

6.
Highly efficient deep blue phosphorescent organic light-emitting diodes (PHOLEDs) using two heteroleptic iridium compounds, (dfpypy)2Ir(acac) and (dfpypy)2Ir(dpm), as a dopant and 9-(3-(9H-carbazol-9-yl)phenyl)-9H-carbazol-3-yl)diphenylphosphine oxide as a host material have been developed. The electroluminescent device of (dfpypy)2Ir(dpm) at the doping level of 3 wt% shows the best performance with external quantum efficiency of 18.5–20.4% at the brightness of 100–1000 cd/m2 and the color coordinate of (0.14, 0.18) at 1000 cd/m2.  相似文献   

7.
Phosphorescent white organic light emitting diodes (WOLEDs) with a multi-layer emissive structure comprising two separate blue layers and an ultra-thin red and green co-doped layer sandwiched in between have been studied. With proper host and dopant compositions and optimized layer thicknesses, high-performance WOLEDs having a power efficiency over 40 lm/W at 1000 cd/m2 with a low efficiency roll-off have been produced. Through a systematic investigation of the exciton confinement and various pathways for energy transfer among the hosts and dopants, we have found that both the ultra-thin co-doped layer and two blue emitting layers play a vital role in achieving high device efficiency and controllable white emission.  相似文献   

8.
Highly efficient green and white phosphorescent organic light emitting diodes were developed using a green phosphorescent host material based on phenyl substituted spirobifluorene. A high quantum efficiency of 25.3% was achieved in the green phosphorescent device and a high quantum efficiency of 21.6% was obtained in the white device with a stacked emitting structure of deep blue and red:green emitting layers.  相似文献   

9.
《Organic Electronics》2014,15(8):1843-1848
High efficiency yellow phosphorescent organic light-emitting diodes were developed using spiro[fluorene-9,8′-indolo[3,2,1-de]acridine]-2,7-dicarbonitrile (ACDCN) as the host material for yellow emitting iridium(III) bis(4-phenylthieno[3,2-c]pyridinato-N,C2′)acetylacetonate (PO-01). The ACDCN host showed bipolar charge transport properties and efficient energy transfer to PO-01 dopant. Maximum external quantum efficiency of 25.7% and external quantum efficiency of 21.9% at 1000 cd/m2 were obtained using ACDCN as the host material. In addition, high external quantum efficiency of 20.9% was achieved in the two color white phosphorescent organic light-emitting diodes with the PO-01 and iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,C2]picolinate doped ACDCN emitting layer.  相似文献   

10.
White organic light-emitting devices (OLEDs) were fabricated using a ultrathin layer 5,6,11,12-tetraphenylnaphthacene as the yellow light-emitting layer and p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-ph) doped in 2-methyl-9,10-di(2-naphthyl)anthracene (MADN) matrix as the blue light-emitting layer. The thickness of rubrene ultrathin layer will seriously affect the device performance, and the device with 1 nm rubrene achieves the best performance, with the maximum luminance of 33,152 cd/m2 at 11 V and the maximum current efficiency of 8.69 cd/A at 7 V.  相似文献   

11.
Ultrathin non-doped emissive layer (EML) has been employed in green phosphorescent top-emitting organic light-emitting diodes (TOLEDs) to take full advantages of the cavity standing wave condition in a microcavity structure. Much higher out-coupling efficiency has been observed compared to conventional doped EML with relatively wide emission zone. A further investigation on dual ultrathin non-doped EMLs separated by a special bi-layer structure demonstrates better charge carrier balance and improved efficiency. The resulting device exhibits a high efficiency of 125.0 cd/A at a luminance of 1000 cd/m2 and maintains to 110.9 cd/A at 10,000 cd/m2.  相似文献   

12.
Organic light emitting devices (OLEDs) are known to heat up when driven at high brightness levels required for lighting and bright display applications. This so called Joule heating can in the extreme case lead to a catastrophic failure (breakdown) of the device. In this work, we compare the effect of Joule heated and externally heated OLEDs by their electrical and optical response. A reduction in resistance is observed at elevated temperatures, both, for Joule heating, and for externally heated samples driven at low current density. In both cases, we attribute the change in resistance to a higher mobility of charge carriers at the elevated temperatures. Additionally, we observe a quenching of the emission efficiency in heated single layers as well as in OLEDs, treated with an external heat source as well as on Joule heated samples.  相似文献   

13.
We examined the performance of solution-processed organic light emitting diodes (OLEDs) by modifying the hole injection layer (HIL), poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS). Atomic force microscopy (AFM) showed morphological changes with surface roughness (RRMS) of 1.47, 1.73, and 1.37 nm for pristine PEDOT: PSS, PEDOT: PSS modified with a 40 v% deionized water and with a 30 v% acetone, respectively. The surface hydrophobicity of the acetone modified PEDOT:PSS HIL layer was decreased by 34% as comparing with the water modified counterpart. Electrical conductivity was increased to two orders of magnitude for the water and acetone modified PEDOT:PSS as compared to pristine. We observed a low refractive index and high transmittance for the modified HILs. We fabricated and explored electroluminescent properties of bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrpic) based sky blue device by utilizing HIL with and without modification. The changes in electrical conductivity, surface roughness, refractive index, and transmittance of the modified HILs strongly influenced the performance of devices. By utilizing a 30% acetone modified HIL, the power efficiency was increased from 14.2 to 24.2 lm/W, an increment of 70% and the EQE from 8.5 to 13.1% at 100 cd/m2, an increment of 54%. The maximum luminance also increased from 11,780 to 18,190 cd/m2. The findings revealed herein would be helpful in designing and fabricating high efficiency solution processed OLEDs.  相似文献   

14.
Blue/orange complementary fluorescence/phosphorescence hybrid white organic light-emitting devices with excellent color stability and high efficiency have been fabricated, which are based on an easily fabricated multiple emissive layer (EML) configuration with an ultrathin non-doped orange phosphorescence EML selectively inserted between heavily doped blue thermally activated delayed fluorescence (TADF) EMLs. Through systematic investigation and improvement on luminance-dependent color shift and efficiency deterioration, a slight Commission Internationale de 1′Eclairage coordinates shift of (0.008, 0.003) at a practical luminance range from 1000 to 10000 cd/m2, a maximum power efficiency of 45.8 lm/W, a maximum external quantum efficiency (EQE) of 15.7% and an EQE above 12% at 1000 cd/m2 have been achieved. The heavily doped blue TADF emitters which act as the main charge transport channels and recombination sites in the host with high-lying lowest triplet excited state, take advantage of the bipolar transport ability to broaden the major charge recombination region, which alleviates triplet energy loss. The selectively inserted ultrathin non-doped orange EML makes its emission mechanism dominated by Förster energy transfer, which is effective to keep color stable under different drive voltages.  相似文献   

15.
We report enhanced light extraction efficiency in organic light-emitting diodes (OLEDs) fabricated on a self-textured aluminum-doped zinc oxide (AZO) anode layer. The self-textured AZO (ST-AZO) layer was fabricated by radio-frequency magnetron sputtering with a short period of thermal treatment without employing any additional etching processes. The green-emitting OLEDs exhibited a maximum power efficiency of 56.1 lm/W with 33.7% external quantum efficiency (EQE). We achieved a 3.24-fold enhancement in power efficiency and 2.55-fold increase in EQE for the OLED fabricated on the ST-AZO anode compared to that fabricated on the ITO anode. Furthermore, a low driving voltage and high current efficiency were obtained simultaneously for the OLED fabricated on the ST-AZO layer compared to that fabricated on the flat ITO anode layer. The ST-AZO layer acted as a random scattering layer that enabled the efficient extraction of generated light and served as the anode layer instead of the commonly used ITO. Our study showed that the ST-AZO layer fabricated by a simple sputtering process effectively improved the optical and electrical properties of the OLED.  相似文献   

16.
制备了结构为ITO/MoO3(x nm)/NPB(40nm)/CBP:14%GIr1(12.5nm)/CBP:6%R-4b(5nm)/C BP:14% GIr1(12.5nm)/BCP(10nm)/Alq3( 40nm)/LiF(1nm)/Al(100nm)的红绿磷光器件,G Ir1和R-4B分别为新型绿色和 红色磷光染料,采用绿-红-绿掺杂顺序,结合BCP对空穴的有效限制作用,研究了不同MoO 3厚度器件的发光 机理。结果表明,在MoO3为40nm时,器件发光性能较好,在电压 为5V、亮度为100cd·m-2时,得到最大的 电流效率为16.91cd·A-1。为提高器件光效,增加TCTA电子 阻挡层,获得了最高电流效率20.01cd·A-1。原因主要是, TCTA的HOMO能级介于NPB和CBP之间,促进空穴注入;TCTA较高的三线态能量对发光层激子的 限制。  相似文献   

17.
本文采用主客体交错结构的发光层,即发光层是 由多组主体材料CBP和客体材料Ir(piq)2(acac)异质结堆叠构成的。为了改善器件的性能 ,分别优化 了单主体层和单客体层的厚度。研 究表明,单主体层厚度为3~4 nm,单客体层厚度为0.3 nm时,器件能够获得的最大电流效率为3.92 cd/A,色纯度 和发光稳 定性俱佳,1mA工作电流下的CIE色坐标为(0.669,0.308),当工作电流从0.1 mA变化 到1mA,色度坐标的变化值(Δ(x,y)) 仅为(0.004,0.002)。所采用的 主客体交错发光层的制备方法,工艺简单,且因为能分别调整主客体层的厚度而改善因客体 分子聚集或因长程偶极子间相互作用对发光效率的影响,为非掺杂磷光有机发光二极管的制 备提供了思路。  相似文献   

18.
A series of novel high triplet energy materials have been designed and synthesized from the simple starting compounds through a simple one-step FriedelCrafts reaction by using triphenylamine and methoxy, fluoro substituted diphenylmethanoles and triphenylmethanol as the starting materials. The synthesized compounds exhibit the ionization potentials in an interval of 5.4–5.7 eV in the solid state, the wide bang-gaps of 3.6 eV and the high triplet energies of about 3.0 eV. The photophysical properties have been confirmed by DFT. The introduction of a material with the lowest ionization potential as the high triplet energy exciton blocking thin layer of the green organic light-emitting diode doubled the quantum efficiency of the device. The best fabricated green device exhibited the maximum current, power, and external quantum efficiencies of 80.1 Cd A−1 and 31.4 Lm W−1, 23.2%, respectively. The triplet-triplet annihilation and triplet-polaron quenching effects for the devices without and with exciton blocking layer have been analyzed.  相似文献   

19.
High triplet energy n-type dopants, lithium 2-(oxazol-2-yl)phenolate (LiOx) and lithium 2-(1-methyl-imidazol-2-yl)phenolate (LiIm), were synthesized as n-type doping materials for phosphorescent organic light-emitting diodes and the effect of the n-type doping materials on the electron mobility and device performances of the phosphorescent organic light-emitting diodes was investigated. The LiOx and LiIm n-type dopants were effective to increase the electron mobility of electron transport materials and improve the quantum efficiency of green and blue phosphorescent organic light-emitting diodes.  相似文献   

20.
Highly efficient thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs) based on exciplex are demonstrated in a blended system with commercially available 1,1-bis((di-4-tolylamino)phenyl)cyclohexane (TAPC) and 2,4,6-tris(biphenyl-3-yl)-1,3,5-triazine (T2T). By well adjusting the ratio between these two materials, the optimized device shows a low turn-on voltage of 2.4 V and a high external quantum efficiency (EQE) of 11.6%. More importantly, the device retains an EQE of 9.4% even at a high luminescence of 1000 cd/m2. The low efficiency roll-off is attributed to the small singlet-triplet splitting and the short of the delayed fluorescence lifetime. Both EQE and efficiency roll-off are ones of the best performance among the reported TADF OLEDs based on exciplex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号