首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the injection of a pure spin current into a non-magnetic Cu wire in a lateral spin valve. We detect the spin accumulation occurring at the interfaces between the magnetic nanopillars and the non-magnetic wire in the non-local geometry. We confirm that the accumulated spins diffuse equally in the Cu wire irrespective of the presence of a charge current. The inversion of the injector and detector magnetic nanopillars does not affect the spin signal, in agreement with analytical predictions for this system.  相似文献   

2.
While consequences of frustration of magnetic interactions are much studied in localized spin systems, much less studies have been performed on frustrated metallic systems. However, several effects of strong geometrical frustration in metallic correlated system have also been experimentally observed in rare-earth or transition metal compounds: coexistence of magnetic and non-magnetic sites in ordered magnetic structure, heavy fermion behaviour and anomalous Hall effect due to spin chirality are consequences of frustration. An overview of the experimental observations and of the proposed models is given. Other interesting effects due to magnetic frustration in metallic systems, which have been predicted theoretically, are also reviewed.  相似文献   

3.
何冬梅  彭斌  张万里  张文旭 《物理学报》2019,68(10):106101-106101
采用磁控溅射法在未掺杂和掺杂的SrTiO_3基片上沉积了NiFe薄膜,通过翻转测试法分离出掺杂样品中的自旋整流电压和逆自旋霍尔电压.研究结果表明:在未掺杂的SrTiO_3基片中,翻转前后测试的电压曲线基本一致,为NiFe薄膜自旋整流效应产生的电压.对于掺Nb浓度x为0.028, 0.05, 0.1, 0.15, 0.2的SrTiO_3基片,分离出的逆自旋霍尔电压随掺杂浓度增加而减小,在掺杂浓度为0.15和0.2的样品中没有探测到明显的逆自旋霍尔电压.本文的结果表明,在SrTiO_3中掺入强自旋轨道耦合的杂质,通过掺杂浓度可以实现对SrTiO_3中逆自旋霍尔效应的调控,这类可调控的自旋相关研究为自旋电子器件的研究和开发提供了更多的可能性,具有很大的潜在应用价值.  相似文献   

4.
Spin-orbit torques (SOTs) have been investigated most widely in normal metal/ferromagnet bilayers where the spin Hall effect of normal metal is a main source of spin currents. Recently, ferromagnets are found to also serve as spin-current sources through spin-orbit coupling. In this work, we theoretically investigate SOT acting on ferromagnet2 in ferromagnet1/normal metal/ferromagnet2 trilayers, which is caused by the spin Hall and spin swapping effects of ferromagnet1. Our result provides an analytical expression of SOT in the trilayers, which may be useful for quantifying the spin Hall and spin swapping effects of ferromagnets and also for designing and interpreting SOT experiments where a ferromagnet is used as a spin-current source instead of a normal metal.  相似文献   

5.
We evaluate the spin polarization (Edelstein or inverse spin galvanic effect) and the spin Hall current induced by an applied electric field by including the weak localization corrections for a two-dimensional electron gas. We show that the weak localization effects yield logarithmic corrections to both the spin polarization conductivity relating the spin polarization and the electric field and to the spin Hall angle relating the spin and charge currents. The renormalization of both the spin polarization conductivity and the spin Hall angle combine to produce a zero correction to the total spin Hall conductivity as required by an exact identity. Suggestions for the experimental observation of the effect are given.  相似文献   

6.
We evaluate the spin polarization (Edelstein or inverse spin galvanic effect) and the spin Hall current induced by an applied electric field by including the weak localization corrections for a two-dimensional electron gas. We show that the weak localization effects yield logarithmic corrections to both the spin polarization conductivity relating the spin polarization and the electric field and to the spin Hall angle relating the spin and charge currents. The renormalization of both the spin polarization conductivity and the spin Hall angle combine to produce a zero correction to the total spin Hall conductivity as required by an exact identity. Suggestions for the experimental observation of the effect are given.  相似文献   

7.
We investigate the topological phase transitions in an anisotropic square-octagon lattice in the presence of spin–orbit coupling and exchange field. On the basis of the Chern number and spin Chern number, we find a number of topologically distinct phases with tuning the exchange field, including time-reversal-symmetry-broken quantum spin Hall phases, quantum anomalous Hall phases and a topologically trivial phase. Particularly, we observe a coexistent state of both the quantum spin Hall effect and quantum anomalous Hall effect. Besides, by adjusting the exchange filed, we find the phase transition from time-reversal-symmetry-broken quantum spin Hall phase to spin-imbalanced and spin-polarized quantum anomalous Hall phases, providing an opportunity for quantum spin manipulation. The bulk band gap closes when topological phase transitions occur between different topological phases. Furthermore, the energy and spin spectra of the edge states corresponding to different topological phases are consistent with the topological characterization based on the Chern and spin Chern numbers.  相似文献   

8.
We systematically measured the dc voltage V(ISH) induced by spin pumping together with the inverse spin Hall effect in ferromagnet-platinum bilayer films. In all our samples, comprising ferromagnetic 3d transition metals, Heusler compounds, ferrite spinel oxides, and magnetic semiconductors, V(ISH) invariably has the same polarity, and scales with the magnetization precession cone angle. These findings, together with the spin mixing conductance derived from the experimental data, quantitatively corroborate the present theoretical understanding of spin pumping in combination with the inverse spin Hall effect.  相似文献   

9.
《Physics letters. A》2020,384(22):126429
Most topological phase transitions are accompanied by the emergence of surface/edge states with spin dependence. Usually, the quantized Hall conductivity cannot characterize the anisotropic transports and spin dependence of topological states. Here, we study the intricate topological phase transition and the anisotropic behavior of edge states in silicene nanoribbon submitted to an electric field or/and a light irradiation. It is interesting to find that a circularly polarized light can induce a type-II quantum anomaly Hall phase, which is manifested as the high Chern number and the strong anisotropic edge states. Besides the measurement of the quantized Hall conductivity, we further propose to probe these topological phase transitions and the anisotropy of edge states by measuring the current-induced nonequilibrium spin polarization. It is found that the spin polarization exhibits more signatures about the behavior of surface/edge states, beyond the quantized Hall conductivity, especially for spin-dependent transports with different velocities.  相似文献   

10.
Using the Keldysh Green’s function method, we study theoretically the electron accumulation induced by the inverse spin Hall effect in a spin valve structure in which a clean quantum wire formed from a 2D electron gas (2DEG) with Rashba/Dresselahaus spin orbit interaction (SOI) is connected to two ferromagnet electrodes. In a nonequilibrium situation when a spin current with an out-of plane (the 2DEG plane) spin polarization is driven through the SOI region by an external voltage, non-equilibrium electron accumulation or a Hall voltage forms at the two lateral sides of the quantum wire and exhibits an oscillation along the wire like the Rashba spin precession; the magnetization directions of FMs affect the Hall voltage and their parallel or antiparallel alignment along the normal direction of the 2DEG plane is most favorable to the Hall voltage. In an equilibrium situation, two planar magnetizations which are not collinear can generate an electron accumulation/a Hall voltage too. When one of the FM electrodes is replaced by a normal metal (NM), the electron accumulation is still present along the wire and its magnitude remains nearly unchanged in the biased case, whereas in the unbiased case it is reduced significantly and even vanishes.  相似文献   

11.
We study linear response to a longitudinal electric field on an antiferromagnetic honeycomb lattice with intrinsic and Rashba spin-orbit couplings (SOCs). It is found that the spin-valley Hall effect could emerge alone or coexist with the spin Hall effect. The spin and spin-valley Hall conductivities exhibit some peculiarities that depend on the distinct topological states of the graphene lattice. Furthermore, the spin and spin-valley Hall conductivities could be remarkably modulated by changing the Fermi level. Our findings suggest that the antiferromagnetic honeycomb lattice with SOCs is an excellent platform for potential applications of spintronics and valleytronics.  相似文献   

12.
Magnetic two-dimensional electron gases are studied using time-resolved Kerr and Faraday rotation spectroscopy in the Voigt geometry. The data directly reveal both electron and Mn spin precession in modest transverse fields. Scattering by Mn ions dominates the electron spin relaxation processes in these materials, and prevents the electron gas from acquiring a long-lived spin polarization as observed in non-magnetic structures. Nonetheless, a persistent Mn spin polarization occurs which creates a oscillating magnetic field within the electron gas for hundreds of picoseconds.  相似文献   

13.
InAs/GaSb/AlSb resonant tunneling spin device concepts   总被引:1,自引:0,他引:1  
We discuss device concepts for creating spin-polarized current sources without external magnetic fields, using non-magnetic 6.1 Å semiconductor resonant tunneling structures. Spin filters, spin pumps, and spin transistors that exploit structural and bulk inversion asymmetries will be examined.  相似文献   

14.
Spin currents, which are excited in indium tin oxide(ITO)/yttrium iron garnet(YIG) by the methods of spin pumping and spin Seebeck effect, are investigated through the inverse spin Hall effect(ISHE). It is demonstrated that the ISHE voltage can be generated in ITO by spin pumping under both in-plane and out-of-plane magnetization configurations.Moreover, it is observed that the enhancement of spin Hall angle and interfacial spin mixing conductance can be achieved by an appropriate annealing process. However, the ISHE voltage is hardly seen in the presence of a longitudinal temperature gradient. The absence of the longitudinal spin Seebeck effect can be ascribed to the almost equal thermal conductivity of ITO and YIG and specific interface structure, or to the large negative temperature dependent spin mixing conductance.  相似文献   

15.
We theoretically study spin-polarized current through a single electron tunneling transistor (SETT), in which a quantum dot (QD) is coupled to non-magnetic source and drain electrodes via tunnel junctions, and gated by a ferromagnetic (FM) electrode. The IV characteristics of the device are investigated for both spin and charge currents, based on the non-equilibrium Green's function formalism. The FM electrode generates a magnetic field, which causes a Zeeman spin-splitting of the energy levels in the QD. By tuning the size of the Zeeman splitting and the source–drain bias, a fully spin-polarized current is generated. Additionally, by modulating the electrical gate bias, one can effect a complete switch of the polarization of the tunneling current from spin-up to spin-down current, or vice versa.  相似文献   

16.
Two different gauge potential methods are engaged to calculate explicitly the spin Hall conductivity in graphene. The graphene Hamiltonian with spin-orbit interaction is expressed in terms of kinematic momenta by introducing a gauge potential. A formulation of the spin Hall conductivity is established by requiring that the time evolution of this kinematic momentum vector vanishes. We then calculated the conductivity employing the Berry gauge fields. We show that both of the gauge fields can be deduced from the pure gauge field arising from the Foldy-Wouthuysen transformations.  相似文献   

17.
We consider a new effect induced by spin–orbit coupling in a two-dimensional electron gas confined in a semiconductor quantum well, i.e. the possibility of spin current generation by fluctuating random Rashba spin–orbit interaction, with the corresponding mean value of the interaction being equal to zero. Our main results suggest that – in contrast to the spatially uniform Rashba spin–orbit interaction – the spin Hall effect does not vanish for typical disorder strengths. We also point out some other possibilities of using such a random Rashba coupling for the generation of spin density and spin current in two-dimensional nonmagnetic structures.  相似文献   

18.
We study the extrinsic spin Hall effect induced by Ir impurities in Cu by injecting a pure spin current into a CuIr wire from a lateral spin valve structure. While no spin Hall effect is observed without Ir impurity, the spin Hall resistivity of CuIr increases linearly with the impurity concentration. The spin Hall angle of CuIr, (2.1±0.6)% throughout the concentration range between 1% and 12%, is practically independent of temperature. These results represent a clear example of predominant skew scattering extrinsic contribution to the spin Hall effect in a nonmagnetic alloy.  相似文献   

19.
《Physics letters. A》2020,384(1):126045
We study the edge-state band and transport property for a HgTe/CdTe quantum well Hall bar under the combined coupling of a transverse electric field and a perpendicular magnetic field. It is demonstrated that a weak magnetic field can protect one of the two edge states, open or enlarge a gap of the other edge state in the Hall bar. However, an appropriate electric field can remove the gap, restoring the quantum spin Hall effect. Using the scattering matrix method, we study the electronic transport of the system. We find that the electric field can not only make the switch from pure spin-up to spin-down current, but also open or close the edge-state channels in a narrow Hall bar under a weak magnetic field, which provides us with a new way to construct a topological insulator-based spin switch and charge switch.  相似文献   

20.
We observe a strong dependence of the amplitude and field position of longitudinal resistivity (ρxx) peaks in the spin-resolved integer quantum Hall regime on the spin orientation of the Landau level (LL) in which the Fermi energy resides. The amplitude of a given peak is maximal when the partially filled LL has the same spin as the lowest LL, and amplitude changes as large as an order of magnitude are observed as the sample is tilted in field. In addition, the field position of both the ρxx peaks and plateau–plateau transitions in the Hall resistance shift depending on the spin orientation of the LLs. The spin dependence of the resistivity points to a new explanation for resistivity spikes, associated with first-order quantum Hall ferromagnetic transitions, that occur at the edges of quantum Hall states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号