首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
:试验制备了一种荧光试剂5,10,15-三苯基-20-吡啶基卟啉(TPPyP),该试剂激发光谱(λ_(ex))为420nm时,在650nm波长处有发射光谱(λ_(em))峰。当试剂与铅(Ⅱ)反应时产生荧光猝灭现象。提出了以此试剂为荧光探针测定痕量铅(Ⅱ)的荧光光度法。在邻苯二甲酸盐-盐酸缓冲溶液中,一定量的十六烷基三甲基溴化铵(CTMAB)存在下,通过测定样品溶液和空白溶液在发射波长650nm的荧光强度,计算得反应液荧光强度的降低程度△F;结果表明:△F值与铅(Ⅱ)的质量浓度在1.0×10~(-4)~1.5×10~(-3)mg·L~(-1)范围内呈线性关系,方法的检出限(3s/k)为4.0×10~(-5)mg·L~(-1)。此方法用于膨化食品中铅(Ⅱ)的测定,回收率在95.0%~107.0%之间,相对标准偏差(n=6)小于3%。  相似文献   

2.
在pH 6.4的磷酸盐介质中,有铜(Ⅱ)存在时,由反应体系水杨基荧光酮(SAF),β-环糊精(β-CD)及乳化剂OP所产生的荧光,由于铜(Ⅱ)与SAF反应生成了配合物而产生猝灭现象,而且荧光强度的减弱程度与铜(Ⅱ)的质量浓度在0.24 mg·L-1以内呈线性关系.荧光检测系在激发波长(λex)365 nm和发射波长(λem)523 nm条件下进行.基于上述事实,提出了测定痕量铜的荧光分光光度法,在应用此方法测定自来水中痕量铜时,测得方法的平均回收率为100.6%,平均相对标准偏差(n=6)为0.24%.  相似文献   

3.
在pH 9.0的PBS介质中葡萄糖与亚甲基蓝反应,使亚甲蓝荧光猝灭。若换用β-环糊精/亚甲基蓝荧光探针,则体系的荧光猝灭强度大大提高。葡萄糖的质量浓度在0.02~26mg·L-1之间与其荧光强度呈线性关系,检出限(3S/N)为0.002mg·L-1。据此,建立了以β-环糊精/亚甲基蓝为荧光探针直接测定葡萄糖的荧光分析方法。该体系最大激发波长为660nm,最大发射波长为678nm。加标回收率在97.4%~101%之间,测定值的相对标准偏差(n=5)在均小于2.5%。  相似文献   

4.
侯明  张静 《分析试验室》2003,22(Z1):238-238
探讨了荧光红与曙红Y之间的荧光能量转移,研究了Cu(Ⅱ)-荧光红-曙红Y-邻菲罗啉能量转移荧光猝灭体系的最佳条件,建立了荧光分析测定痕量铜的新方法.实验结果表明,在λex/λem=404.7 nm/545 nm,乳化剂0P存在下,荧光红的荧光光谱(λem=524 nm)和曙红Y的吸收光谱(λmax=520 nm)能有效重叠.当荧光红和曙红Y单独存在时,其最大发射波长分别为524 nm和545 nm;当荧光红和曙红Y同时存在时,曙红Y的最大发射波长不变,但其荧光强度明显增大,可见,荧光红和曙红Y分别作为能量给予体和能量接受体发生能量转移,使曙红Y荧光光谱灵敏度增大.在pH 6.5~7.6的KH2PO4-NaOH缓冲溶液中,Cu(Ⅱ)与曙红Y和邻菲罗啉形成配合物使曙红Y的荧光猝灭,加入荧光红后,体系的荧光猝灭值大大增加.利用荧光红-曙红Y能量转移荧光猝灭法测定痕量铜,提高了测定铜的灵敏度和选择性.铜含量在0~250μg/L范围内与曙红Y的荧光猝灭程度成良好的线性关系.方法的检出限为0.082μg/L;测定100μg/L铜溶液,其相对标准偏差为4.6%;样品加标回收率为101%~107.7%.方法已应用于人发、茶叶中痕量铜的测定.  相似文献   

5.
在pH=9.33的NH3.H2O-NH4Cl缓冲介质中,于表面活性剂溴化十六烷基三甲铵(CTMAB)存在下,利用Mn(Ⅱ)与2,3,7-三羟基-9-(2,4-二羟基)苯基荧光酮(DHPF)形成Mn(Ⅱ)-DHPF-CTMAB三元配合物可产生荧光猝灭,建立了荧光猝灭法测定痕量Mn(Ⅱ)的新方法。该体系激发波长λex=520nm,发射波长λem=540nm,荧光猝灭值与Mn(Ⅱ)的含量在0~0.36μg/25mL范围内呈线性关系,检出限为0.02μg/25mL,在CTMAB存在下,配合物摩尔比Mn(Ⅱ)∶DHPF=1∶2。拟定方法用于测定尿样中微量锰的含量,结果满意。  相似文献   

6.
提出了用同步扫描-双波长荧光分光光度法同时测定肾上腺素(EP)、去甲肾上腺素素(NEP)和多巴胺(DA)3种儿茶酚胺类神经递质.试验表明:荧光检测宜选定发射波长(λen)与激发波长(λex)的波长差为70 nm(△λ=λem-λex)的条件下进行同步扫描.在λem为385.0 nm时DA的荧光信号不受EP和NEP的干扰,而EP和NEP相互的干扰,采用双波长荧光检测模式可消除.选择测定NEP的波长对为470.0 nm(λem,1)和531.8 nm(λem,2),测定EP的波长对为500.0 nm(λ'em,1)和445.6 nm(λ'em,2).测得荧光强度与3种儿茶酚胺浓度在320 μg·L-1(EP),640 μg·L-1(NEP)及160μg·L-1(DA)内呈线性关系,检出限(3σ/k)依次为0.20,0.97,0.73 μg·L-1.  相似文献   

7.
在pH 7.6的PBS介质中,且在PVA存在下,荧光桃红在其荧光发射峰555nm处的荧光强度因β-环糊精的加入而增强(荧光开),当在此体系中加入镍(Ⅱ)离子,其荧光发生猝灭(荧光关),其猝灭程度(ΔIf)与镍(Ⅱ)的质量浓度在5~300μg·L-1范围内呈线性关系,检出限(3S/N)为1.75μg·L-1。应用此"开关"型荧光探针测定了污水和矿石样品中镍的含量,并用标准加入法进行回收试验,测得回收率在98.8%~106%之间,测定值的相对标准偏差(n=10)在1.2%~2.2%之间。对此荧光体系的反应机理也作了初步探讨。  相似文献   

8.
罗丹明6G荧光猝灭法测定农产品中痕量铁   总被引:1,自引:0,他引:1  
在稀硫酸溶液中,铁(Ⅲ)与碘化钾反应生成游离碘(以络阴离I-,3 状态存在).所释出的I-,3与罗丹明6G反应生成离子缔合络合物,导致罗丹明 6G 的荧光猝灭.在激发波长 483 nm 及发射波长 551 nm 处测定空白试液及含铁试样溶液的荧光强度F,o及F,s并算得荧光猝灭强度△F.试验结果表明:铁(Ⅲ)的质量浓度在 0.01~0.40 mg·L-1范围内与其相应的荧光猝灭值△F 之问呈线性关系,并测得其检出限(S/N=3)为 0.005 mg·L-1.应用此方法测定了3种农产品试样中的含铁量,并以此试样为基体加入铁(Ⅲ)标准溶液测定了方法的回收率在 95.7%~99.3%之间.  相似文献   

9.
微波消解-荧光猝灭法测定痕量铜的研究   总被引:1,自引:0,他引:1  
利用微波消解前处理样品,在(CH2)6N4(六亚甲基四胺)-HCl介质中,溶液中的铜能与甲磺酸加替沙星形成稳定的络合物,使甲磺酸加替沙星的内源性荧光显著猝灭,据此建立了铜-甲磺酸加替沙星的荧光分析新方法.该体系的最大激发波长λex=365 nm,最大发射波长λem=500 nm,铜浓度在4.0×10-8 ~1.2×10-5 mol/L范围内,与荧光猝灭程度成正比.检出限为1.2×10-8 mol/L,回收率为97% ~104%.该法可直接用于测定铜含量,结果令人满意.  相似文献   

10.
建立了在羟丙基-β-环糊精(HP-β-CD)和乳化剂(OP)存在下,在NaAc-HAc介质中,以水杨基荧光酮(SAF)作为荧光试剂,用荧光猝灭法测定微量铜的新方法;最大激发波长和发射波长分别为365 nm和539 nm,Cu2+含量在0~0.20μg/mL范围内符合线性关系,方法检出限为1.0μg/L。已用于人发和茶叶中铜含量的测定。  相似文献   

11.
对水热合成CdTe量子点的方法加以改进,并合成了用3-巯基丙酸(MPA)修饰的CdTe量子点(MPA-CdTe QD′s)。该量子点具有荧光特性,激发、发射波长分别为320,558nm。试验了17种常见金属离子对此量子点荧光强度的影响,结果发现只有Cd(Ⅱ)离子对其荧光有增强作用;Hg(Ⅱ)、Cu(Ⅱ)、Ag(Ⅰ)则对其荧光有猝灭作用,加入适量抗坏血酸和碘化钾可消除这3种金属离子的荧光猝灭作用。试验在pH 6的缓冲介质中,以20μL MPA-CdTe QD′s作为荧光探针,加入不同浓度的Cd(Ⅱ)离子并在反应6min后,体系的荧光增强程度与Cd(Ⅱ)离子浓度在5.0×10-7~3.9×10-5 mol·L-1范围内呈线性关系,检出限(3s/k)为4.8×10-7 mol·L-1。  相似文献   

12.
研究了含硫酰腙试剂1,5-二(2-羟基苯亚甲基)-二氨基硫脲与锌荧光反应的特性及最佳反应条件,建立了荧光光度法测量微量锌的新方法。在pH4.70的HOAc-NaOAc溶液中,试剂与Zn2+形成物质的量之比为1∶1的配合物,在最大激发波长eλx=400nm和最大发射波长eλm=464nm处,锌的线性范围为0~780μg.L-1,检出限为12μg.L-1,线性相关系数为0.9998。方法简便快速地用于含锌食盐、人发中锌的测定。  相似文献   

13.
在KH2PO4-Na2HPO4介质中,乳化剂OP存在下,铜(Ⅱ)与水杨基荧光酮(SAF)形成配合物使荧光猝灭,由此建立了测定微量铜的荧光猝灭新方法.该体系的最大激发波长λex=365 nm,最大发射波长λem=526 nm.研究表明,该法Cu(Ⅱ)的含量在0.0~5.0 μg/25mL范围内与荧光猝灭程度(△F)呈线性关系,相关系数R2=0.9993,检出限为1.28 μg/L.方法灵敏度高,选择性好,用于测定纤维用亚麻原茎中微量铜的测定,回收率在99.8%~101.5%之间.  相似文献   

14.
应用荧光纳米颗粒测定痕量铜   总被引:1,自引:0,他引:1  
制备了异硫氰酸罗丹明B(TRITC)荧光纳米颗粒,于pH 6.0的磷酸盐缓冲溶液中此荧光纳米颗粒在558 nm光的激发下,于586 nm波长处发射荧光.铜(Ⅱ)的存在可使此荧光纳米颗粒溶液的荧光发生猝灭.借此,构建了一种检测微量铜的方法.在最佳试验条件下,该方法测定铜的线性范围为5.00×10-5~3.50×10-4 mol·L-1,其回归方程为F/F0=8.425 2-1.009×10-6 c,检出限为3.55×10-5 mol·L-1.  相似文献   

15.
在pH 3.1~5.2的HCl-NaAc缓冲介质中,溶液中的铁(Ⅲ)与过氧化氢(H2O2),水杨基荧光酮(SAF)和溴化十六烷基三甲铵(CTMAB)反应产生一多元混合络合物,使水杨基荧光酮溶液的荧光明显猝灭,据此建立了测定痕量铁的荧光猝灭分析法.该体系的激发波长λex=435.8 nm,发射波长λem=540 nm.铁的浓度在2~100 μg/L范围内有良好的线性关系;方法的检出限为0.41 μg/L.该方法灵敏度高,操作简便,用于天然水和人发样中微量铁的测定,结果满意.  相似文献   

16.
氨苄西林与铜(Ⅱ)形成配合物,减弱了铜(Ⅱ)对核固红的荧光猝灭作用,导致体系荧光增强,据此提出了一种测定氨苄西林含量的荧光光谱法。考察了缓冲溶液、试剂加入顺序、核固红和铜(Ⅱ)的浓度、反应温度和时间、离子强度等对体系的影响。在最佳试验条件下,氨苄西林的质量浓度在0.50~26mg·L-1范围内与增强的荧光强度呈线性关系,检出限(3s/k)为0.40 mg·L-1。将方法用于氨苄西林胶囊中氨苄西林含量的测定,回收率在98.1%~101%之间,测定值的相对标准偏差(n=6)在1.7%~2.1%之间。  相似文献   

17.
利用萘酰亚胺衍生物N-氨基-4-(N-甲基哌嗪)-1,8-萘酰亚胺(AMN)为荧光探针,建立了一种荧光猝灭法分析测定蛋白质的新方法。在pH=3.5的磷酸盐缓冲体系中,AMN的激发和发射波长分别为387nm和533nm。牛血清蛋白(BSA)的加入能够使其荧光发生不同程度的猝灭,猝灭程度与0.1~12.0μg·mL-1浓度范围的BSA呈线性关系。该方法简便快速,选择性好且灵敏度高,对BSA的检测限为1.05×10-8 g·mL-1;用于血清中总蛋白质含量的测定,加标回收率为98.7%~103.2%,相对标准偏差(RSD)在3.63%以内。  相似文献   

18.
侯明 《分析试验室》2003,22(Z1):254-256
在pH 8.0~9.0的KH2PO4-Na2B4O7缓冲溶液中,在乳化剂OP存在下,溶液中的汞(Ⅱ)与邻菲啰啉(o-phen)和水杨基荧光酮(SAF)反应生成一多元配合物,使水杨基荧光酮溶液的荧光猝灭,据此建立了测定痕量汞的荧光分析法.体系的激发波长λex=365.0 nm,发射波长λem=580 nm.汞的浓度在0~80μg/L范围内与△F存在良好的线性关系.方法的检出限为1.04 ng/mL.对1μgHg(Ⅱ)进行11次平行测定,其相对标准偏差RSD=1.9%,配合物的组成比为Hg(Ⅱ)o-phenSAF=122.方法用于环境水样中痕量汞的测定.  相似文献   

19.
将具有荧光特性的8-氨基喹啉和吡啶类试剂结合, 并引入杂环三氮烯结构, 合成了新型荧光试剂1-(8-喹啉)-3-(2-吡啶)-三氮烯(QPyT). 其结构经元素分析、红外光谱和核磁共振谱证实. 研究结果表明, 在碱性介质中, 该试剂在λex/λem=216 nm/343 nm处产生强荧光, 并且能被Pb(Ⅱ)猝灭. 据此建立了QPyT测定Pb(Ⅱ)的新型荧光分析法. 该方法的线性范围为1.6×10-7~1.2×10-5 mol /L, 检测限为9.0×10-8 mol/L. 将其应用于水中Pb(Ⅱ)的测定, 结果令人满意.  相似文献   

20.
在pH 7.4的磷酸盐缓冲溶液和十六烷基三甲基溴化铵(CTMAB)介质中,钙黄绿素与罗丹明B之间发生能量转移而导致后者的荧光增强(λem581nm)。当在此体系中加入痕量Co2+后,于发射波长581nm处产生荧光猝灭现象。据此提出了荧光猝灭法测定中草药中痕量钴含量。Co2+的质量浓度在4.0×10-4~1.35×10-2g.L-1范围内与反应液荧光强度的降低程度呈线性关系,方法的检出限(3S/N)为1.8×10-7g.L-1。方法用于中草药样品分析,回收率在97.6%~102%之间,测定值的相对标准偏差(n=6)在0.98%~1.5%之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号