首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
采用停流法对PH=7.8的磷酸盐缓冲液体系中丝氨酸铜Cu(Ser)2和甘氨酰甘氨酸铜Cu(Gly-Gly)2催化超氧了脑子自由基O2-歧化反应的动力学进行了研究,求得不同温度下的催化速率常数kcat、反应级数n、活化能En及指前因子A,初步探讨了Cu(Ser)2和Cu(Gly-Gly)2催化O2-歧化反应机理,证实了第一步反应为整体反应过程的速控步骤。  相似文献   

2.
用DSC研究了BPPDPS改性BMI树脂固化反应动力学,获得固化反应级数n=1.4,活化能E=81.24kJ/mol,以及树脂的固化工艺:140℃,1h;190℃,2h;250℃,4h。测定了不同配比固化树脂的吸水率、玻璃化温度、热氧化性和弯曲性能,当树脂配比为1.5:1时,固化树脂表现优良的耐热性,特别是在耐热性方面,230℃弯曲强度保留达82.4%,并用Friedman法推导出固化树脂的热降解反应活化能为290kJ/mol,遵循一级反应。  相似文献   

3.
在Mn2O3-Na2WO4/SiO4催化剂上的甲烷氧化偶联反应可用Rideal-redox机理描述,它包括均相及多相两个步骤.甲基自由基的生成是一个多相过程(表面反应),C2烃的生成是一个均相过程(气相反应).催化剂的活性同氧化速率(k1)和CH4与表面氧种的反应速率(k2)有关,C2烃的选择性与甲基自由基氧化速率常数和甲基自由基偶联速率常数的比值(k/k4)有关,这些常数均可从实验中求得.  相似文献   

4.
本文采用时间相关单光子计数对卟啉酞菁TTP-(CH2)n-Pc模型化合物的光致电子转移进行了研究,发现激发Pc时,呈现单指数衰减,n=4时电子转移速率减小,活化能,重排能增加,电子转移效率下降,电子转移反应△GCS与电荷分离活化络合物衰变速率KCT,按以下规律:△G^(5)CS〉△^(3)CS〉△^(4)CS〉△^(2)CS,k^(2)CS〉k^(3)CS〉k^(4)CS〉k^(5)cs。其△G^  相似文献   

5.
聚丙撑碳酸酯增韧环氧树脂的研究   总被引:6,自引:0,他引:6  
研究了聚丙撑碳酸酯(PPC)对环氧树脂(EP)的改性作用、加入20~30Phr的PPC,环氧树脂力学性能可以大幅度提高,粘接剪切强度为1233MPa,冲击强度为16.78kJ/m2;而纯环氧树脂固化物,其剪切强度为9.36MPa,冲击强度为9.99kJ/m2。SEM和DSC观测表明PPC/EP体系呈两相结构。  相似文献   

6.
薛建跃 《化学教育》2002,23(5):45-45
活化能是化学反应的一个重要动力学参数。利用分光光度计这一精密仪器 ,测得的吸光度随时间的变化率 ,即为该反应的速率。在水溶液中过二硫酸铵和碘化钾发生反应[1] S2 O82 -+3I-=2SO42 -+I3 -(1)其反应速率方程式可表示为 :  v =k[S2 O82 -]m[I-]n (2 )式中v是在此条件下反应的瞬时速率 ,若[S2 O82 - ]、[I- ]是起始浓度 ,则v表示起始速率。k是速率常数 ,m与n之和是反应级数。实验能测定的速率是在一段时间 (Δt)内反应的平均速率v 。如果在Δt时间内S2 O82 - 浓度的改变为Δ[S2 O82 - ],则平均速率 :  …  相似文献   

7.
应用微量吸附量热技术研究了室温H2,CO,O2和C2H4在m(Pd)/m(SiO2)=2%,m(Pd,Cu)/m(SiO2)「n(Pd)/n(Cu)=1/1」=2%,m(Pd,Cu)/m(SiO2)「n(Pd)/n(Cu=1/4」=2%和m(Cu)/m(SiO2)=8%催化剂表面的吸附性能,并考察了O2对C2H4吸附性能的影响,结果表明,Pd-Cu/SiO2具有与Pd/SiO2数量相近的表面Pd原子,加入Cu可使Pd对H2和CO的强吸附位数目相对减少,弱吸附位数目相对增加Pd增加了H2在Cu/SiO2催化剂表面的吸附量,加速了O2在Cu表面的吸附速率,Pd原子和Cu原子在Pd-Cu/SiO2混合均匀且分散良好,乙烯在Pd/SiO2表面吸附有乙川,di-σ和π吸附态。Cu的加入可抑制乙类在Pd表面吸附氧发生氧化反  相似文献   

8.
余林  徐奕德 《催化学报》1993,14(5):373-377
在20%La2O3/CaO(LC)催化剂中添加SrO(添加SrO的LC以SLC表示)明显地提高了反应活性和C2选择性。反应动力学研究表明,LC和SLC催化剂在甲烷氧化偶联反应中,在表观活化能和表观反应级数上存在很大的差异。LC催化剂在CH4转化以及C2和COx形成过程中,表观活化能大于SLC催化剂,而SLC催化剂的指前因子小于LC体系,两者存在着补偿形象。SLC催化剂的反应速率常数比kc2/kCH  相似文献   

9.
提出钯金属复合膜制备的一种新化学镀饰过程,由衬底活化和金属自催化沉积两个主要步骤构成.一般的化学镀饰过程用Pd(Ⅱ)/Sn(Ⅱ)溶液的氧化还原反应活化目标衬底;新的化学镀饰过程是应用溶胶-凝胶技术活化目标衬底,从而明显地简化了镀饰过程.用新的化学镀饰过程制得的钯金属复合膜避免了Sn杂质;在温度314~450℃和膜两侧的压力差002~010MPa的实验条件下,对氢的选择性(氢氮分离系数)为20~130,氢的渗透速率为005~24cm3/(cm2·s).  相似文献   

10.
用266nm激光光解CHBr3分子产生CH(C)态自由基,通过测量CH(C^2Σ^+→X^2Ⅱ)的总荧光信号强度来测定室温下O2、N2、n-C5H12、n-C6H14和n-C7H16对CH(C2Σ^+,v′=0)的猝灭常数。结果表明,这些碰撞伴侣(O2和N2例外)对CH(X、A、B和C)的反应或猝灭速率常数k存在下列关系:k(X)〉k(B)〉k(A)≈k(C),且烷烃分子对CH(C)态的猝灭速率常  相似文献   

11.
酸酐固化环氧树脂/蒙脱土复合材料的等温固化动力学   总被引:5,自引:0,他引:5  
用等温差示扫描量热法(DSC)研究了酸酐固化环氧树脂/蒙脱土复合材料的等温固化过程,考察了未处理的蒙脱土(MMT)和有机蒙脱土(OMMT)对环氧树脂固化动力学的影响. 实验表明, 环氧树脂的固化过程包含自催化机理,加入蒙脱土没有改变固化反应机理. 用Kamal方程对该体系的固化过程进行拟合,得到反应级数m、n,反应速率常数k1、k2,总反应级数(m + n)在2.4~3.0之间. MMT的加入使环氧树脂体系的k1、k2有所降低,而OMMT的加入对体系的k1、k2影响较为复杂,加入蒙脱土对环氧树脂固化体系的活化能影响较小.  相似文献   

12.
The kinetics of the cure reaction for system of o-cresol formaldehyde epoxy resin (o-CFER)/succinic anhydride (SA) and tertiary amine as a catalyst was investigated with a differential scanning calorimeter (DSC). Autocatalytic behavior was shown in the first stages of the cure for the system, which was well described by the model proposed by Kamal that includes two rate constants, k1 and k2, and two reaction orders, m and n. The overall reaction order, m + n, is in the range 2.1-2.6, and the activation energy for k1 and k2 was 109 and 72.0 kJ/mol, respectively. In the later stages, a cross-linked network was formed and the cure reaction is mainly controlled by diffusion. Diffusion factor, f(alpha), was introduced into Kamal's equation, then the calculated values agree very well with the experimental data. The molecular mechanism of this curing reaction was discussed.  相似文献   

13.
几种聚醚胺改性蒙脱土对环氧树脂固化过程的影响   总被引:1,自引:0,他引:1  
段轶锋  王小群  刘羽中  杜善义 《化学学报》2012,70(10):1179-1186
首先制备了五种聚醚胺改性蒙脱土(MMT), 并将这五种聚醚胺改性蒙脱土加入到双酚A 型环氧树脂E51 和聚醚胺D400体系中, 采用差示扫描量热法(DSC)考察了五种聚醚胺改性MMT对环氧树脂升温固化进程的影响. 随后, 优选一种EP/MMT 混合体系即EP/D400-T500-MMT 混合体系, 系统地研究了该体系与纯环氧树脂体系在130, 140, 150 及160 ℃等几个温度下的等温固化过程, 考察了等温固化时间对固化度和固化度变化速率的影响以及固化度与固化度变化速率之间的关系, 并利用Kamal 模型进行拟合计算了固化动力学参数. 研究结果表明, 与纯环氧树脂相比, 几种聚醚胺改性MMT 的固化放热峰均向高温迁移, 同时聚醚胺D400 协同插层MMT 降低了高分子量聚醚胺插层MMT 所导致的环氧树脂DSC 曲线的畸变情况; EP/D400-T500-MMT 混合体系和纯环氧体系的等温固化反应过程符合Kamal 模型;在相同的固化温度下, EP/D400-T5000-MMT 混合体系的反应速率常数k1k2 值以及反应级数m 均比纯EP 体系小, 而反应级数n 以及总反应级数m+n 值比纯EP 体系大, 表明两种聚醚胺协同插层的改性蒙脱土D400-T5000-MMT 的加入降低了环氧体系固化反应速率. 另外, EP/D400-T5000-MMT 混合体系的活化能Ea1Ea2 与纯EP 体系的相比也略有升高.  相似文献   

14.
聚酰胺-胺(PAMAM)树枝状大分子是近些年来在科学界引起广泛关注的一种聚合物[1~3].它具有高度规整的分子结构,形状接近球体,表面存在密集的官能团,而内部则存在大量的空腔,这些特殊结构导致了它的许多性质与线性高分子存在很大差异,从而吸引了众多的科学家投入对它特殊性能和特  相似文献   

15.
聚六亚甲基碳酸酯二醇增韧环氧树脂的固化动力学   总被引:3,自引:0,他引:3  
The kinetics of the cure reaction for the system consisting of bisphenol-A diglycidyl ether, No.70 anhydride, Polyhexamethylene Carbonate Diol(PHMCD) and DMP-30 has been studied. By use of differential scanning calorimetry(DSC) under isothermal condition, the reaction is found to proceed first via autocatalytic mechanism up to a conversion of 0.3 and then become a first order reaction over a temperature range of 130~160 ℃. The kinetic parameters of the curing reaction have also been determined with both E1 = 63.74 kJ.mol-1, lnA1=13, lnA2 = -3for the autocatalytic mechanism and E =64.68 kJ•mol-1, lnA = 13.8 for the first order mechanism.  相似文献   

16.
TBBPAER/DDM的固化反应动力学   总被引:4,自引:0,他引:4  
用等温差示扫描量热法研究了4,4’-二氨基二苯甲烷固化四溴双酚-A环氧树脂的反应动力学,测定了固化反应热,得出了不同温度下固化反应速率与反应程度、固化反应程度与反应时间的关系曲线.结果表明等温固化反应按自催化反应机理进行,用Kamal方程较好地描述了不同温度下其固化反应的自催化反应过程,并反映出不同温度下扩散作用的差别,其动力学参数k1、k2、m、n由非线性回归法拟合而出,k1、k2对应的反应表现活化能分别为52.2kJ·mol-1和46.5kJ·mol-1。  相似文献   

17.
18.
A new model has been deduced by assumed autocatalytic reactions. It includes two rate constants, k 1 and k 2, two reaction orders, m and n, and the initial concentration of [OH]. The model proposed has been applied to the curing reaction of a system of bisphenol-S epoxy resin (BPSER), with4,4'-diaminodiphenylmethane (DDM) as a curing agent. The curing reactions were studied by means of differential scanning calorimetry (DSC). Analysis of DSC data indicated that an autocatalytic behavior showed in the curing reaction. The new model was found to fit to the experimental data exactly. Rate constants, k 1 and k 2 were observed to be greater when curing temperature increased. The activation energies for k 1 and k 2 were 95.28 and 39.69 kJ mol–1, respectively. Diffusion control was incorporated to describe the cure in the latter stages. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Summary: The curing kinetics of diglycidyl ether of bisphenol A (DGEBA) and 4,4′‐diaminodiphenylmethane (DDM) was analyzed using isothermal differential scanning calorimetry (DSC) modes by using a simple mechanistic model which includes two rate constants, k1 and k2, two reaction orders, n1 and n2, and the ratio of initial concentration of hydroxyl group to initial epoxy concentration, c0. Analyses of DSC data indicated that an autocatalytic reaction existed in the curing process. The mechanistic model proposed in this paper fits the experimental data exactly. Rate constants, k1 and k2 have been found to increase with rising curing temperature. The activation energies for the relative reactions were determined to be 66.00 ± 4.21 and 50.74 ± 8.92 kJ/mol, respectively. The complex equivalent constant, K, decreased with increasing temperature. Diffusion control was incorporated to describe the cure in the latter stages.

Comparison of experimental data with the mechanistic model for the curing kinetics of DGEBA with DDM.  相似文献   


20.
The investigation of the cure kinetics of a diglycidyl ether of bisphenol A (DGEBA)/phenol‐novolac blend system with different phenolic contents initiated by a cationic latent thermal catalyst [N‐benzylpyrazinium hexafluoroantimonate (BPH)] was performed by means of the analysis of isothermal experiments using a differential scanning calorimetry (DSC). Latent properties were investigated by measuring the conversion as a function of curing temperature using a dynamic DSC method. The results indicated that the BPH in this system for cure is a significant thermal latent initiator and has good latent thermal properties. The cure reaction of the blend system using BPH as a curing agent was strongly dependent on the cure temperature and proceeded through an autocatalytic kinetic mechanism that was accelerated by the hydroxyl group produced through the reaction between DGEBA and BPH. At a specific conversion region, once vitrification took place, the cure reaction of the epoxy/phenol‐novolac/BPH blend system was controlled by a diffusion‐control cure reaction rather than by an autocatalytic reaction. The kinetic constants k1 and k2 and the cure activation energies E1 and E2 obtained by the Arrhenius temperature dependence equation of the epoxy/phenol‐novolac/BPH blend system were mainly discussed as increasing the content of the phenol‐novolac resin to the epoxy neat resin. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2945–2956, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号