首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Abstract— Energy transfer from chlorophyll A in its lowest triplet state to carotenoid pigments is demonstrated by rapid flash photolysis experiments.
Two systems are used; the first consists of chlorophyll A and p carotene in organic solvents: in diluted solutions, energy transfer is diffusion controlled. The second consists of chlorophyll A and lutein incorporated into digitonin micelles suspended in water; with this system a very rapid energy transfer is observed (< 0.4 × 10--6 sec).
Energy transfer results in a carotenoid metastable state, which is supposed to be a triplet state; for lutein its half-life is 8·9 × 10--6 sec, and it has an absorption peak at 518 nm. Depopulation of lutein ground state, around 450 nm, can be observed, as well as the reactivity of oxygen towards the metastable state.
Most of these results were obtained with a Q -switch ruby laser as exciting source (6943 Å). A 4350 Å flash can also be obtained by two successive non linear effects. Using this flash for exciting chlorophyll A alone, a strong signal is detected, due to its triplet state. By exciting directly B carotene or lutein, it is not possible to detect any metastable state with our technique.  相似文献   

2.
As investigated in neutrophils, the very weak luminescence accompanying the arachidonic acid cascade is associated with the lipoxygenase pathway. The emission is dramatically enhanced by energy transfer to chlorophyll a. The number of chlorophyll molecules excited to the fluorescent state per oxygen consumed, (the S1/O2 ratio), equal to the product of the quantum yields of chemiexcitation and of energy transfer, is 5.4 x 10(-6). The quantum yield of chemiexcitation is inferred to be higher than 1 x 10(-3). The two most likely chemiexcitation routes point to triplet conjugated carbonyls as the most likely candidates for the excited species that transfer to chlorophyll. As such the emission intensity may reflect the level of hydroperoxyeicosatetraenoic acid. This is the first case where addition of a biotic substrate to a cellular system results in substantial generation of electronic excited states without any drastic loss of cell viability. Whether the formation of excited states in the arachidonic acid cascade in neutrophils is accidental or has a biological role is an open question.  相似文献   

3.
Upon laser photolysis of chlorophyll-quinone solutions in ethanol, transients due to the chlorophyll triplet state (Ct), the chlorophyll cation radical (C+) and the semiquinone radical (Q-) can be observed. The rise of Q- parallels the decay of Ct. demonstrating the precursor role of the triplet. The decay of C+ is second order, consistent with reverse electron transfer, and has a rate constant which is independent of quinone potential, and an activation energy of 14kJ/mol due mainly to the temperature dependence of solvent viscosity. Triplet quenching and C+ yield are found to decrease with decreasing quinone potential.  相似文献   

4.
Abstract Laser flash photolysis experiments have shown that the diquat analog containing a propylene bridge (PDQ2+), when electrostatically bound to negatively-charged vesicles containing chlorophyll, is able to mediate the rapid reduction ( k = 1.1 × 105 s-1) of spinach ferredoxin via electron transfer quenching of triplet state chlorophyll. The kinetics of formation and decay of reduced ferredoxin are consistent with a mechanism involving complex formation between oxidized ferredoxin and vesicle-bound PDQ2+. Under optimal conditions, approximately 15% of the quenched triplets yield reduced ferredoxin. This process is a model for soluble ferredoxin reduction which occurs in green plant photosystem I, and results in an appreciable storage of electromagnetic energy in the reaction products.  相似文献   

5.
Photosynthetic energy conversion competes with the formation of chlorophyll triplet states and the generation of reactive oxygen species. These may, especially under high light stress, damage the photosynthetic apparatus. Many sophisticated photoprotective mechanisms have evolved to secure a harmless flow of excitation energy through the photosynthetic complexes. Time‐resolved laser‐induced optoacoustic spectroscopy was used to compare the properties of the T1 states of pheophytin a and its metallocomplexes. The lowest quantum yield of the T1 state is always observed in the Mg complex, which also shows the least efficient energy transfer to O2. Axial coordination to the central Mg further lowers the yield of both T1 and singlet oxygen. These results reveal the existence of intrinsic photoprotective mechanisms in chlorophylls, embedded in their molecular design, which substantially suppress the formation of triplet states and the efficiency of energy transfer to O2, each by 20–25 %. Such intrinsic photoprotective effects must have created a large evolutionary advantage for the Mg complexes during their evolution as the principal photoactive cofactors of photosynthetic proteins.  相似文献   

6.
The fate of excitation energy and electron transfer to quinones within Chl-a-containing phosphatidyl choline liposomes has been investigated. The bilayer membrane of the liposome stabilizes the Chl triplet state, as evidenced by a three-fold increase in the lifetime over that observed in ethanol solution. The relative triplet yield follows the relative fluorescence yield, indicative of quenching at the singlet level. Triplet state lifetimes are markedly shortened as the Chl concentration is increased, demonstrating that quenching occurs at the triplet level as well. This process is shown to be due to a collisional de-excitation. In the presence of quinones, the Chl triplet reduces the quinone resulting in production of long-lived electron transfer products. The percent conversion of Chl triplet to cation radical when benzoquinone is employed as acceptor is approximately 60 ± 10%, which is slightly less than in ethanol solution (70 ± 10%). The lifetime of the radical, however, can be as much as 1900 times longer. With respect to potentially useful photochemical energy conversion, the magnitude of this increased lifetime is far more significant than is the decreased radical yield.  相似文献   

7.
Abstract— The kinetics of the triplet-triplet energy transfer of chlorophyll α (Cha) to β carotene (Car) has been investigated in Triton X100 micelles by 353 nm laser flash photolysis. This transfer consists of an intramicellar process involving pigment species located in the same micelle. A kinetic model using a bimolecular treatment leads to a rate constant of the energy transfer in the micellar phase ( k tm≅ 6 × 108 M -1 s-1) lower than the previously determined values in homogeneous solvents ( k t≅ 4.6 ≅ 109 M -ls-l); this result shows the high microviscosity of the micellar core. In addition, the apparent bimolecular rate constant ( k t≅ 5.0 ≅ 1010 M -l s-1) appears to be an order of magnitude higher than in homogeneous solvents. The lifetime of the carotene triplet state is the same in the hydrophobic core of Triton X100 micelles (τ a = 7.7 μs) as in organic solvents (hexane or carbon disulfide). The transfer yield is controlled by the distribution of chlorophyll and carotene molecules in the micelles.  相似文献   

8.
Laser-induced changes in the absorption spectra of isolated light-harvesting chlorophyll a/b complex (LHC II) associated with photosystem II of higher plants have been recorded under anaerobic conditions and at ambient temperature by using multichannel detection with sub-microsecond time resolution. Difference spectra (ΔA) of LHC II aggregates have been found to differ from the corresponding spectra of trimers on two counts: (i) in the aggregates, the carotenoid (Car) triplet–triplet absorption band (ΔA>0) is red-shifted and broader; and (ii) the features attributable to the perturbation of the Qy band of a chlorophyll a (Chla) by a nearby Car triplet are more pronounced, than in trimers. Aggregation, which is known to be accompanied by a reduction in the fluorescence yield of Chla, is shown to cause a parallel decline in the triplet formation yield of Chla; on the other hand, the efficiency (100%) of Chla-to-Car transfer of triplet energy and the lifetime (9.3 μs) of Car triplets are not affected by aggregation. These findings are rationalized by postulating that the antenna Cars transact, besides light-harvesting and photoprotection, a third process: energy dissipation within the antenna. The suggestion is advanced that luteins, which are buried inside the LHC II monomers, as well as the other, peripheral, xanthophylls (neoxanthin and violaxanthin) quench the excited singlet state of Chla by catalyzing internal conversion, a decay channel that competes with fluorescence and intersystem crossing; support for this explanation is presented by recalling reports of similar behaviour in bichromophoric model compounds in which one moiety is a Car and the other a porphyrin or a pyropheophorbide.  相似文献   

9.
The lowest triplet state of tris(8-hydroxyquinoline)aluminium(III) (Alq3) has been prepared by pulse radiolysis/energy transfer from appropriate donors in benzene solutions and has an absorption maximum around 510 nm with a lifetime of about 50 mus. It is quenched by molecular oxygen, leading to singlet oxygen formation. From flash photolysis and singlet oxygen formation measurements, a quantum yield of triplet formation of 0.24 was determined for direct photolysis of the complex. A value of 2.10 +/- 0.10 eV was determined for the energy of the lowest triplet state by energy transfer studies and was confirmed by phosphorescence measurements on Alq3, either in the heavy atom solvent ethyl iodide or photosensitized by benzophenone in benzene. Dexter (exchange) energy transfer was observed from triplet Alq3 to platinum(II) octaethylporphyrin.  相似文献   

10.
Abstract When micelle-solubilyzed chlorophyll is present during the horseradish peroxidase catalyzed aerobic oxidation of ethyl α-formylphenylacetate its fluorescence is observed. The excitation of chlorophyll may occur via energy transfer from the enzyme-generated triplet ethyl benzoylformate. These results imply that excited states may be generated in the roots of Datura innoxia .  相似文献   

11.
Abstract— Cytochrome c has been shown to bind via electrostatic interactions to egg phosphatidylcholine vesicles which contain 5–30 mol percent of negatively-charged surfactant (dihexadecylphosphate) in a low ionic strength medium. Under these conditions the oxidized cytochrome can function as a direct one-electron acceptor from membrane-bound triplet state chlorophyll to produce chlorophyll cation radical and reduced cytochrome. Kinetic experiments using laser flash photolysis have demonstrated that triplet quenching and the yield of electron transfer products increase, and product lifetime decreases, with an increase in the magnitude of the negative charge on the vesicles, and with a decrease in the ionic strength of the medium. Both triplet quenching and product formation rates and yields showed saturation behavior as the cytochrome concentration was increased, and reached limiting values at 20–30 μM cytochrome when the vesicle contained 20 mol percent of the negatively-charged surfactant. This behavior is interpreted in terms of saturation of the vesicle surface binding sites. Under optimum conditions in this system, approximately 20% of the chlorophyll triplet molecules could be converted to electron transfer products which had a halftime for the reverse reaction of approximately 1.5 ms.  相似文献   

12.
Laser flash photolysis has been used to determine the kinetics of cytochrome c reduction by chlorophyll triplet state in negatively-charged lipid bilayer vesicles, as mediated by quinones. Large synergistic enhancements in the yield of reduced cytochrome were obtained using a pair of quinones, one of which was lipophilic (e.g. benzoquinone, 2,6-di-f-butylbenzoquinone) and the other of which was hydrophilic (e.g. l,2-naphthoquinone-4-sulfonate). The mechanism was shown to involve initial quenching of the triplet by the membrane-associated quinone to form chlorophyll cation radical and quinone anion radical. An interquinone electron transfer process followed this reaction, which occurred at the membrane-water interface, and greatly facilitated electron transport from within the bilayer to the aqueous phase. This process formed the basis of the synergistic effect. Cytochrome c reduction occurred in the water phase by reaction with the anion radical of the hydrophilic quinone. Finally, the reduced cytochrome was reoxidized by a slow reaction with chlorophyll cation radical. Under the most favorable conditions, we estimate that the quantum yield of conversion of triplet quenching events to reduction of cytochrome approached unity. The lifetime of the reduced protein and oxidized chlorophyll could be as long as 140 ms, under the best conditions. This system has properties which are thus quite favorable for solar energy conversion in a biomimetic process.  相似文献   

13.
比较了几种金属酞菁光敏产生单重态氧和超氧负离子的能力,结果表明它们产生1O2的能力与中心金属的电子结构有关,取决于三重态寿命和量子产率。顺序如下:Zn>Ga>Cu>H2>Al>Co。产生O2·-的能力不仅与三重态寿命和量子产率有关,也与激发能和氧化还原电位有关。其顺序如下:Ga>Al>Cu>Zn。还研究了酪氨酸与镓酞菁激发态相互作用,酪氨酸猝灭镓酞菁荧光。在除氧条件光激发下,酪氨酸猝灭镓酞菁的激发三重态发生电子转移,检测到GaTSPc-在560nm处的瞬态吸收,在氧的存在下进一步反应生成O2·-。  相似文献   

14.
Negatively charged vesicle suspensions containing chlorophyll a (chl) dissolved in the lipid bilayer, flavin mononucleotide (FMN) and/or ethylenediaminetetraacetic acid (EDTA) enclosed in the inner compartment as electron sources and oxidized cytochrome c (cyt c[ox]) in the outer compartment as an electron acceptor have been studied using laser flash photolysis and steady-state irradiation methods. Cytochrome c initially quenches the chl triplet state (3chl) generating the chlorophyll cation radical (chi+′) in the membrane. Reverse electron transfer from cyt c(red) to chl+. subsequently occurs in a kinetically biphasic reaction, with rate constants of 430 pT 30 and 21.9 pT 1.7 s?1 for the fast and slow phases, respectively. In the absence of FMN, reduction of chl+′ by EDTA in the inner compartment can be observed during steady-state irradiation but not in a laser flash photolysis experiment. This is due to a low reaction yield, which is probably limited by the repulsive electrostatic interaction between EDTA and the negatively charged membrane. When FMN was enclosed together with EDTA in the inner Compartment, the reaction yield of vectorial electron transfer across the bilayer from EDTA to cyt c(oX) was increased by a factor of six during steadystate white light irradiation. Laser flash photolysis and steady-state irradiation experiments using red and blue light excitation have demonstrated that the enhancement mechanism involves the formation of fully reduced FMN by blue light-sensitized photooxidation of EDTA via the flavin triplet state, occumng simultaneously with red lightsensitized electron transfer to cyt c via the chlorophyll triplet state.  相似文献   

15.
Abstract— –Pulse radiolysis has been used to excite the triplet states of β-carotene (τ# 9μ sec) and lycopene (τ= 8μsec) in hexane solution, both in the presence and absence of naphthalene as a triplet sensitiser. The absorption spectra of both triplets have been measured in the range 430–550 nm and have thus been extended into the region of the corresponding singlet absorptions. The overlap of the triplet and singlet spectra is discussed in relation to in vivo studies. Extinction coefficients of 1.3±0.1 × 105 l/mole cm for β-carotene triplet 515 nm and 3.9±0.2 × 105 l/mole cm for lycopene triplet at 525 nm were obtained. Isomerisation of the all- trans polyenes used was detected and preliminary measurements indicate that the yield of isomerisation was greater than the triplet yield. The rate of triplet energy transfer from naphthalene to β-carotene was estimated to be 1.5 × 1010 l/mole sec. The corresponding value for lycopene was 1.4× 1010 l/mole sec. The measured efficient quenching of triplet β-carotene by oxygen may occur by an energy transfer mechanism, leading to the formation of singlet oxygen (1Δg. This would suggest that the triplet energy level of β-carotene lies between 121 and 94 kJ mole-1.  相似文献   

16.
Abstract— We have determined the chlorophyll triplet quenching efficiencies, the chlorophyll cation radical yields and the conversion efficiencies of chlorophyll triplet to radical in large and small unilamellar phosphatidylcholine vesicles (LUV and SUV, respectively) in the presence of electrically-charged electron acceptors (ferricyanide and oxidized cytochrome c) located in either the inner or outer aqueous compartments of the vesicles. Both types of vesicles displayed inside-outside asymmetry, although the properties were reversed. Triplet quenching in SUV was more efficient when ferricyanide was located within the vesicle interior, whereas the reverse was true in LUV. When ferricyanide was located on the outside of the vesicles, the extent of triplet quenching in LUV was about two times that in SUV and the amount of cation radical formed in LUV was about two times that in SUV. Under these conditions, the conversion efficiencies of chlorophyll triplet to radical were 12.2% for LUV and 8.5% for SUV. With cytochrome c as an electron acceptor in negatively charged vesicles (25 mol per cent dixhexadecylphosphate incorporated) similar results were obtained. Again, the triplet quenching and radical yield inside-outside asymmetry properties were reversed between the two types of vesicles, and radical formation efficiencies when cyt c was located outside the vesicles were higher in LUV (11.7%) than in SUV (4.2%). We conclude that the inside-outside asymmetric photochemical behavior of unilamellar phosphatidylcholine vesicles is influenced by factors in addition to the difference in radius of curvature between the inside and outside surfaces. It is suggested that transmembrane electrostatic potentials may be involved. Furthermore, in the present system the properties of LUV were more favorable to photochemical electron transfer product formation than those of SUV.  相似文献   

17.
The asymptotic quantum yield of triplet energy transfer is found by calculating the fraction of acceptor molecules with energy above the minimum energy for decomposition. This is done by allowing for a statistical energy distribution among the internal modes in the collision complex. It is found that for a monatomic triplet donor most of the triplet energy is transferred to the acceptor molecule, while for a polyatomic donor molecule only a fraction of it is available for future decomposition of the acceptor.  相似文献   

18.
Abstract— PS-I particles isolated according to Shiozawa et al. (1974) show increased rates of O2-- and H +-uptake with ascorbate as electron donor upon combination with an artificial vesicular lipid membrane. The amount of increase varies depending on the reconstitution procedure used. Combination of PS-I particles with Triton X-100 micelles increases these photochemical activities even more. The observed proton uptake in PS-I lipid vesicles is not caused by the well-known proton gradient found in thylakoid membranes, since lipid vesicles containing extracted leaf Chl show the same activities and uncouplers have no effect. Because these phenomena are also caused by solubilized Chl, it is concluded that there is no obvious correlation with PS-I activity. Proton uptake most probably is caused by oxidation of ascorbate by either singlet oxygen, superoxide or OH-radicals formed in the light. Experimental results are obtained which indicate that Chl in lipid catalyzes formation of superoxide and singlet oxygen. However, it is not clear whether superoxide formation is caused by direct electron transport from excited Chl to oxygen or by a secondary reaction. Diphenylcarbazone disproportionation has been reported as a specific photosystem I reaction. However, PS-I lipid vesicles and Chl-lipid-Triton X-100 mixtures oxidize DPCN at comparable rates, showing that the reaction is not specific for PS-I. Cations stimulate DPCN disproportionation in Chl-lipid-Triton X-100 mixtures but do not affect the rate of P700 photooxidation at all. Therefore it is suggested that Gross and Greniers (1978) conclusion that cation regulation of PSI electron flow (studied by DPCN disproportionation of PS-I particles in Triton X-100 micelles) provides a fine tuning mechanism for energy transfer, has to be reevaluated.  相似文献   

19.
Abstract— The photochemical reactions of chlorophyll intermediates in vitro have been studied by the flash photolysis method. The flash excitation of pigment solutions has been shown to involve the population of a chlorophyll triplet state where the oxidation-reduction processes occur. The mechanism and kinetics of pigment triplet decay have been investigated from 20°to — 50°C and the ability of chlorophyll molecules to carry out triplet-triplet energy transfer has been established. The latter phenomenon has been used to show up the role of chlorophyll triplets in the reversible photooxidation reaction with P -quinone. There have been studied initial products of pigment photoreduction with ascorbic acid and phenylhydrazine. Experimental data of the mechanism of the initial oxidation and reduction in chlorophyll photosensitized reactions have been analysed. There have been also obtained the differential spectra of chlorophyll triplets and radicals. A calculation has been made of rate constants for a few elementary reactions.  相似文献   

20.
The photophysical properties of Er(III) complexes coordinated with platinum[5,10,15-triphenyl-20-(4-carboxyphenyl)-porphyrin] (PtP) and terpyridine (tpy) ligands in organic solution were investigated. The Er(III) complex emitted sensitized near-IR (NIR) luminescence when the PtP ligands were excited under deoxygenated conditions. The quantum yield (PhiLn) of the sensitized luminescence was 0.015%, as evaluated from luminescence lifetime. The photophysical studies and theoretical calculations suggest that the F?rster resonance mechanism is very suitable for the energy transfer from PtP to the Er(III) ion and occurred through the first triplet excited state of PtP. The 12.3% energy transfer from the triplet state to the 4F9/2 and 4I9/2 states of Er(III) occurred with a rate distribution of 3.36x10(5) and 6.67x10(4) s(-1), respectively. In addition, the observed triplet quantum yield of the PtP ligand in [Ln(PtP)3(tpy)] proved that the energy transfer from the singlet excited state of the PtP ligand to the Er(III) ion did not take place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号