首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In this paper a set of Brazilian commercial gasoline representative samples from São Paulo State, selected by HCA, plus six samples obtained directly from refineries were analysed by a high-sensitive gas chromatographic (GC) method ASTM D6733. The levels of saturated hydrocarbons and anhydrous ethanol obtained by GC were correlated with the quality obtained from Brazilian Government Petroleum, Natural Gas and Biofuels Agency (ANP) specifications through exploratory analysis (HCA and PCA). This correlation showed that the GC method, together with HCA and PCA, could be employed as a screening technique to determine compliance with the prescribed legal standards of Brazilian gasoline.  相似文献   

2.
采用气相色谱分析技术,可快速、准确地测定清洁汽油中的含氧化合物含量.参照ASTM D4815及SH/T0663的要求,在上海市计算技术研究所自主研制生产的气相色谱仪上开发此专用分析方法,分析汽油中C1~C4醇、甲基叔丁基醚(MTBE)、乙基叔丁基醚(ETBE)、叔戊基甲基醚(TAME)等组分,测试范围:醇,0.1%(M/M)~12.0%(M/M);醚,0.1%(M/M)~20.0%(M/M).再结合开发的专用色谱分析软件,力求给用户提供性价比更高、操作更加便捷的分析系统.  相似文献   

3.
The potential in alcohols as fuel had for long being recognized by the early inventors of machines and engines, even before gasoline and the hydrocarbons became popular. In fact, Henry Ford, one of the pioneers in automobile manufacture, designed his equipment to run on ethanol. But since then, time has seen gasoline and other conventional fuels take the front seat in engine application. This article is an insight into the experiment carried out to produce fuel from cassava starch and the characterization to determine some of the fuel properties in comparison to gasoline. The choice of cassava for the production was based on its availability and ability to grow in almost all geographical regions in Nigeria. Experimental production gave a sample concentration of 87% corresponding to a yield of 0.534 cm3 of ethanol per gram of starch hydrolyzed while the sample characteristics for the latent heat of vaporization, heat of combustion, flash point, and density are 950 kJ/kg, 22133.7 kJ/kg, 17–20°C, and 0.825, respectively. The results obtained compared favorably with those of gasoline that the sample concentration.  相似文献   

4.
The primary standard test method used for the determination of gasoline diluent in used engine oils is method D 3525-93 of the American Society for Testing and Materials (ASTM), which involves direct injection of used oil onto a packed GC column and flame ionization detection. Recently, we have utilized a new headspace sampling method: headspace solvent microextraction (HSM), for GC and GC-MS analysis of gasoline diluent in used engine oils. High resolution capillary columns can be used without the necessity for the use of inlet cryogenic cooling or expensive sampling interfaces. This analytical method, which we generically refer to as headspace microdrop analysis yields results comparable to those obtained using the ASTM method, with the added benefit that it allows the quantification of individual volatile diluent components, including benzene, toluene, ethylbenzene and the xylenes.  相似文献   

5.
Comprehensive two‐dimensional gas chromatography (GC×GC) has been applied to the quantitation of oxygenates in reformulated gasoline. Target oxygenates were C1–C4 alcohols, tert‐pentanol, methyl tert‐butyl ether (MTBE), diisopropyl ether (DIPE), ethyl tert‐butyl ether (ETBE), and tert‐amyl methyl ether (TAME). These were separated from the gasoline matrix using a volatility‐based selectivity in the first chromatographic dimension, followed by a mixed‐phase polarity/shape selectivity in the second dimension. The high resolving power of this stationary phase combination completely separated all oxygenates except DIPE, ETBE, and TAME, which exhibited coelution with other nonpolar gasoline components. Oxygenates quantitation was achieved with the use of an internal standard, an FID detector, and calibration curves. Quantitation results are in good agreement with ASTM and EPA standard methods. When coupled with our previous method for BTEX and aromatics, a single GC×GC method can now quantitate MTBE, alcohols, BTEX, and aromatics in a one‐hour analysis.  相似文献   

6.
Fourier transform-near infrared (FT-NIR) and FT-Raman spectrometries have been used to design partial least squares (PLS) calibration models for the determination of the ethanol content of ethanol fuel and alcoholic beverages. In the FT-NIR measurements the spectra were obtained using air as reference, and the spectral region for PLS modeling were selected based on the spectral distribution of the relative standard deviation in concentration. In the FT-Raman measurements hexachloro-1,3-butadiene (HCBD) has been used as an external standard. In the PLS/FT-NIR modeling for ethanol fuel analysis 50 ethanol fuel standards (84.9-100% (w/w)) were used (25 in the calibration, 25 in the validation). In the PLS/FT-Raman modeling 25 standards were used (13 in the calibration, 12 in the validation). The PLS/FT-NIR and FT-Raman models for beverage analysis made use of 24 standards (0-100% (v/v)). Twelve of them contained sugars (1-5% (w/w)), one-half was used in the calibration and the other half in the validation. Different spectral pre-processing were used in the PLS modeling, depending on the type of sample investigated. In the ethanol fuel analysis the FT-NIR pre-processing was a 17 points smoothed first derivative and for beverages no spectral pre-processing was used. The FT-Raman spectra were pre-processed by vector normalization in the ethanol fuel analysis and by a second derivative (17 points smoothing) in the beverage analysis. The PLS models were used in the analysis of real ethanol fuel and beverage samples. A t-test has shown that the FT-NIR model has an accuracy equivalent to that of the reference method (ASTM D4052) in the analysis of ethanol fuel, while in the analysis of beverages, the FT-Raman model presents an accuracy equivalent to the reference method. The limits of detection for NIR and Raman calibration models were 0.05 and 0.2% (w/w), respectively. It has also been shown that both techniques, present better results than gas chromatography (GC) in evaluating the ethanol content of beverages.  相似文献   

7.
The detailed characterisation of middle distillates is essential for a better understanding of reactions involved in refining process. Owing to higher resolution power and enhanced sensitivity, comprehensive two-dimensional gas chromatography (GC x GC) is a powerful tool for improving characterisation of petroleum samples. The aim of this paper is to compare GC x GC and various ASTM methods -- gas chromatography (GC), liquid chromatography (LC) and mass spectrometry (MS) -- for group type separation and detailed hydrocarbon analysis. Best features of GC x GC are demonstrated and compared to these techniques in terms of cost, time consumption and accuracy. In particular, a new approach of simulated distillation (SimDis-GC x GC) is proposed: compared to the standard method ASTM D2887 it gives unequal information for better understanding of conversion process.  相似文献   

8.
Comprehensive, two-dimensional gas chromatography (GC x GC) is used in conjunction with trilinear partial least squares (Tri-PLS) to quantify the percent weight of naphthalenes (two-ring aromatic compounds) in jet fuel samples. The increased peak capacity and selectivity of GC x GC makes the technique attractive for the rapid, and possibly less tedious analysis of jet fuel. The analysis of complex mixtures by GC x GC is further enhanced through the use of chemometric techniques, including those designed for use on 2-D data such as Tri-PLS. Unfortunately, retention time variation, unless corrected, can be an impediment to chemometric analysis. Previous work has demonstrated that the effects of retention time variation can be mitigated in sub-regions of GC x GC chromatograms through the application of an objective retention time alignment algorithm based on rank minimization. Building upon this previous work, it is demonstrated here that the effects of retention time variation can be mitigated throughout an entire GC x GC chromatogram with an objective retention time alignment algorithm based on windowed rank minimization alignment. A significant decrease in calibration error is observed when the algorithm is applied to chromatograms prior to construction of Tri-PLS models. Fourteen jet fuel samples with known weight percentages of naphthalenes (ASTM D1840) were obtained. Each sample was subjected to five replicate five-minute GC x GC separations over a period of two days. A subset of nine samples spanning the range of weight percentages of naphthalenes was chosen as a calibration set and Tri-PLS calibration models were subsequently developed in order to predict the naphthalene content of the samples from the GC x GC chromatograms of the remaining five samples. Calibration models constructed from GC x GC chromatograms that were retention time corrected are shown to exhibit a root mean square error of prediction of roughly half that of calibration models constructed from uncorrected chromatograms. The error of prediction is lowered further to a value that nearly matches the uncertainty in the standard percent weight values (ca. 1% of the median percent volume value) when the aligned chromatograms are truncated to include only regions of the chromatogram populated by naphthalenes and compounds of similar polarity and boiling point.  相似文献   

9.
全二维气相色谱/飞行时间质谱用于柴油组成的研究   总被引:14,自引:0,他引:14  
将全二维气相色谱法(GC×GC)用于柴油馏分的组成分布研究,建立了两种GC×GC方法,一种用于柴油组成的详细表征,另一种用于柴油族组成的快速分离和定量,两种方法均不需要样品预处理。用前一种方法对柴油馏分中的烃类化合物、主要的含硫化合物与含氮化合物组成进行了研究;对催化裂解柴油中的27种含氮化合物和42种含硫化合物进行了定性;用后一种方法在70 min内即可完成柴油馏分族组成的定量分析,应用所建立的方法测定了4个不同来源的柴油馏分中非芳烃、一环芳烃、二环芳烃、三环芳烃的含量,定量结果与ASTM D2425法  相似文献   

10.
A fast one-step technique has been developed for the resolution of hydrocarbons into aromatics, olefines and saturates. The analyser consists of three branches with different capillary restrictions, specific absorbers and delayers, and can be applied to gaseous or liquid samples of hydrocarbons with a boiling point of up to 220°C. The time required for an analysis under optimal conditions is 6 min. The analyser is installed directly in the oven of the gas chromatograph, using a single flame ionisation detector. It was tested by selected hydrocarbons occurring in gasoline in significant amounts in different concentration ranges. Leaded and unleaded commercial gasolines were examined as real samples. The method had been successfully applied to the fast identification of hydrocarbons in the case of fuel spills.  相似文献   

11.

This paper investigates the effect of some biofuels on thermal balance and performance characteristics of a single-cylinder, four-stroke SI internal combustion engine. In this study, total and instantaneous energy balance of an air-cooled, small-scale engine using various biofuels is investigated. An experimental study is carried out on gasoline engine to validate the numerical calculations. Bio-alternative fuels which include methanol, ethanol and 2-ethanol–gasoline-blended fuels consisting of E85, E15 are examined numerically. Results indicate that methanol is the most effective fuel in aspect of power generation. Ethanol, E85, E15 and gasoline are placed in next positions, respectively. Break specific fuel consumption shows totally reversed trend. It is evaluated that by increasing engine speed, heat transfer to brake power ratio decreases and lower percentage of energy in form of heat transfer is lost. The least heat transfer to brake power ratio among studied fuel is related to methanol which approves it as the most efficient biofuel. Based on instantaneous in-cylinder energy balance analysis, at the end of combustion and during expansion stroke, instantaneous brake work of fuels outpaces each other at around 40° crank angle aTDC.

  相似文献   

12.
Retentivity tuning in comprehensive two dimensional GC separations of aliphatics (linear and cyclic hydrocarbons) and aromatics in gasoline by changing the carrier gas flows in the column series at constant working temperature parameters of both columns is discussed. Comprehensive 2D techniques studied include GC×GC with cryogenic and differential flow modulation and non-modulated transfer (NMT). In all configurations, the first dimension was a non-polar column and the second dimension a polar column. Using three different flows (0.6, 1.0 and 1.4mL/min) of helium carrier gas in cryogenic modulated GC×GC illustrated that, as expected, retention of the solutes on the (1)D and (2)D columns increased but the separation quality was nearly constant. A change of carrier gas pressure (p(m)=175-125kPa) on the (1)D and (2)D columns joint point at constant inlet pressure (p(i)=525kPa) in NMT, induces an increase of the carrier gas flow rate on the (1)D and a decrease on the (2)D column, respectively. The higher retentivity of the (2)D column improved the group type separation of aliphatic/cyclic hydrocarbons and aromatics and a higher distribution of aromatics on the 2D retention plane was noted. Retentivity tuning was also performed in flow modulated GC×GC by operating the (1)D column at 0.8mL/min and the (2)D column at 20 and 26mL/min. The higher retentivity at 20mL/min improved the group type separation of aliphatic/cyclic hydrocarbons and aromatics in the 2D retention plane.  相似文献   

13.
柴油烃族组成分布的GC-MS测定   总被引:6,自引:0,他引:6       下载免费PDF全文
应用GC-MS测定柴油烃族组成按沸点的分布,通过柱色 谱分离后的柴油饱和烃和芳烃组分分别进入气相色谱-质谱联用仪分析,采集其每一扫描的质谱图后,按ASTM-D2425方法计算其每一扫描的烃族组成,因为每一扫描与保留时间对应,所以可将两部分烃族组成加和后应用ASTM-D2887方法计算柴油烃族组成按沸点的分布规律;实验结果表明,该法与ASTM-D2887和ASTM-D2425的实验结果吻合,并能给出有关柴油烃族组成的详尽分布规律。  相似文献   

14.
This work reports preliminary studies on the characterisation of anhydrous ethanol (AEA) used as an automotive fuel mixed with gasoline in Porto Alegre (South Brazil). Pre-concentration of the impurities contained in 1000 ml of AEA was carried on through solid-phase extraction using XAD4 resin. The main compounds in the extract were identified by means of spectral data from the library of the equipment. The concentrate was then fractionated using a preparative liquid chromatographic column filled with activated silica gel and the elution procedure was carried out with, n-hexane, n-hexane-benzene (1:1, v/v) and dichloromethane. Prior to analysis by GC-MS, each fraction was reduced to 1 ml with a gentle stream of nitrogen. Saturated linear hydrocarbons and aromatic hydrocarbons eluted in the first fraction and oxygenated compounds such as aldehydes. ketones and alcohols, eluted in the second one. were the main compounds detected in the sample.  相似文献   

15.
Comprehensive two-dimensional gas chromatography (GC×GC) has been applied to the quantitative analysis of benzene, toluene, ethylbenzene, xylenes (BTEX), and all heavier aromatic compounds in gasoline. The two-dimensional chromatographic separation used volatility selection on the first-dimension column and polarity selection on the second-dimension column. In the resulting GC×GC chromatogram, aromatic species were resolved from other compound classes. Moreover, structurally related aromatics were grouped in a manner that facilitated identification and integration. The response of a flame ionization detector to each major aromatic group in gasoline was calibrated using internal standards. Quantitation produced results directly comparable with ASTM standard methods. The present GC×GC method can be expanded to analyze other gasoline components.  相似文献   

16.
The volatile composition of 20-year-old out-of-service creosote-treated railway wood sleepers was studied. The emitted volatile fraction was collected by means of dynamic purge-and-trap concentration at ambient temperature, and analyzed by comprehensive two-dimensional gas chromatography (GC x GC) hyphenated with mass spectrometric detection systems, using quadrupole (GC x GC/qMS) and time-of-flight (GC x GC/ToF-MS) mass analyzers and selective nitrogen-phosphorus detection (GC x GC-NPD). The analysis of mass spectrometry data and GC x GC retention time allowed the tentative identification of about 300 compounds based on spectrometric data and positioning of each compound in the GC x GC plot. Major important headspace components are polyaromatic hydrocarbons, phenols and benzene derivatives, hydrocarbons and heterocyclic compounds containing nitrogen, sulphur or oxygen atoms. Many of the reported compounds are listed as belonging to toxicological substance classes which have been related to harmful health effects. GC x GC provides greater speciation and evidence of composition heterogenicity of the sample than one-dimensional GC analysis, thus allowing to better demonstrate its potential toxicity. Data obtained by specific detection systems for N-heterocycles assisted mass data interpretation assignments. The enhanced separation power obtained after GC x GC compared to one-dimensional gas chromatography (1D-GC) together with spectral deconvolution and correlation with physical-chemical data, allowed the identification of complex isomer clusters, as demonstrated for alkylquinolines, and applied also to alkylphenols, alkylbenzenes and alkylnaphthalenes.  相似文献   

17.
Since recently Mid-Infrared Spectroscopy is being used in the petrol industry for determining important chemical-physical properties of gasoline. This technique enables to achieve results similar to those obtainable with standard methods at shorter times, lower costs and safer sample handling. This can be obtained by employing multivariate regression models in the framework of a chemometric analytical approach. In the present work some gasoline properties including density, Reid vapor pressure, Research Octane Number, aromatic hydrocarbons content and fraction recovered at 70 degrees C were determined with standard methods (ISO, CEN, ASTM) on 93 samples of unleaded gasoline produced in an oil refinery. The same samples were also analyzed by FT-IR spectrophotometry, recording absorptions of seven characteristic bands. The obtained values of chemical-physical and spectroscopic properties were used to develop and validate a multivariate regression model. This established an experimental correlation between these two sets of variables derived from the same gasoline samples. The model was able to correctly predict the chemical physical properties of a set of unknown gasoline samples produced in the same refinery starting from the spectroscopic ones.  相似文献   

18.
In the current energetic context (increasing consumption of vehicle fuels, greenhouse gas emission etc.) government policies lead to mandatory introduction in fossil fuels of fuels resulting from renewable sources of energy such as biomass. Blending of fatty acid alkyl esters from vegetable oils (also known as biodiesel) with conventional diesel fuel is one of the solutions technologically available; B5 blends (up to 5%w/w esters in fossil fuel) are marketed over Europe. Therefore, for quality control as well as for forensic reasons, it is of major importance to monitor the biodiesel origin (i.e. the fatty acid ester distribution) and its content when it is blend with petroleum diesel. This paper reports a comprehensive two-dimensional gas chromatography (GC x GC) method that was developed for the individual quantitation of fatty acid esters in middle distillates matrices. Several first and the second dimension columns have been investigated and their performances to achieve (i) a group type separation of hydrocarbons and (ii) individual identification and quantitation of fatty acid ester blend with diesel are reported and discussed. Finally, comparison of quantitative GC x GC results with reference methods demonstrates the benefits of GC x GC approach which enables fast and reliable individual quantitation of fatty acid esters in one single run. Results show that under developed chromatographic conditions, quantitative group type analysis of hydrocarbons is also possible, meaning that simultaneous quantification of hydrocarbons and fatty acid esters can be achieved in one single run.  相似文献   

19.
A two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC–TOFMS) method was developed for the hydrocarbon class composition analysis and benzene, toluene, ethylbenzene, and xylene (BTEX) estimation of raffinate column bottom (RCB), which is generated as a by-product from linear alkyl benzene (LAB) plants. The molecular level characterization of RCB is important to generate value-added products for the petrochemical industry. GC×GC–TOFMS was found to be an excellent tool for estimation of hydrocarbon class composition (paraffins, naphthenes, monoaromatics, diaromatics, and polyaromatic hydrocarbons) and trace level BTEX in a single run. The hydrocarbon class composition was validated with the standard method based on HPLC (ASTM D6591) and good correlation was obtained. Finally, RCB is anticipated to be a useful nonhazardous safe by-product which could be used further for generating added value.  相似文献   

20.
ASTM D6729 gas chromatographic fingerprinting coupled to pattern-recognition multivariate soft independent modeling of class analogy (SIMCA) chemometric analysis provides an original and alternative approach to screening Brazilian commercial gasoline quality. SIMCA, was performed on gas chromatographic fingerprints to classify the quality of representative commercial gasoline samples selected by hierarchical cluster analysis and collected over a 5 month period from gas stations in São Paulo State, Brazil. Following an optimized ASTM D6729 gas chromatographic-SIMCA algorithm, it was possible to correctly classify the majority of commercial gasoline samples. The method could be employed for rapid monitoring to discourage adulteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号