首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of the search for the optimal experimental conditions for ultrasentitive chemical analysis of 1-naphthalenethiol (1-NAT) and 2-naphthalenethiol (2-NAT) using surface-enhanced Raman scattering (SERS) are discussed. The report begins with a review of the vibrational spectra, including infrared and Raman spectra of the target molecules, and the interpretation of the observed frequencies aided by local density functional theory (DFT) calculations at the B3LYP/6-311G(d,p) level of theory. Several metal nanostructures were tested for SERS activity, including island films and colloids of silver, gold and copper. Correspondingly, the most effective laser line for excitation in the visible and near infrared region was sought. The achieved detection limit for 1-naphthalenethiol, and for 2-naphthalenethiol, on silver nanostructures is in the zeptomole regime.  相似文献   

2.
Size tunable and structure tailored core-shell-shell nanospheres containing silica cores, gold nanoparticle shells, and controlled thicknesses of smooth, corrugated, or porous silica shells over the gold nanoparticles have been synthesized. The synthesis involved the deposition of gold nanoparticles on silica cores, followed by sol-gel processing of tetraethoxysilane (TEOS) or sodium silicate to form dense or porous silica shells, respectively, over the gold nanoparticles. The structures and sizes of the resulting core-shell-shell nanospheres were found to heavily depend on the sizes of the core nanoparticles, the relative population of the gold nanoparticles on each core, and the concentration of TEOS. While a higher TEOS concentration resulted in thicker and more uniform silica shells around individual larger silica cores (approximately > or =250 nm in diameter), the same TEOS concentration resulted in aggregated and twin core-shell-shell nanostructures for smaller silica cores (approximately < or =110 nm in diameter). The thinner silica shells were synthesized by using a lower TEOS concentration. By using sodium silicate (Ung et al. J. Phys. Chem. B 1999, 103, 6770), the porous silica shells were synthesized. Controlled chemical etching of the core-shell-shell nanoparticles with an aqueous KCN solution resulted in corrugated silica shells around the gold nanoparticles or corrugated silica nanospheres with few or no gold nanoparticles. This has allowed synthesis of new types of core-shell-shell nanoparticles with tailored corrugated shells. The nanoporous silica shells provided accessible structures to the embedded metal nanoparticles as observed from the electrochemical response of the gold nanoparticles.  相似文献   

3.
Highly ordered gold nanoparticle multilayer films were achieved conveniently using didodecyldimethylammonium bromide (DDAB) films as a template. The template was produced by casting DDAB chloroform solution onto the surface of a (3-aminopropyl)trimethoxysilane-modified indium tin oxide substrate and then evaporating the organic solvent. Gold nanoparticle multilayer films were prepared by soaking the template in 2.6 nm colloidal gold solution for 120 min. The well-ordered superlattice structure of the DDAB template and the gold nanoparticle multilayer films was identified by x-ray diffraction. The characterizations of the gold nanoparticle multilayer films by UV-vis spectroscopy, atomic force microscopy, and cyclic voltammerty were described in detail. The application of the as-prepared gold nanoparticle multilayer films in surface-enhanced Raman spectroscopy (SERS) was investigated by using Rhodamine 6G as a probe molecule. It was found that the colloidal gold nanoparticle multilayer films exhibit remarkable enhancement ability and can be used as SERS substrates.  相似文献   

4.
A gold nanoparticle film for surface-enhanced Raman scattering (SERS) was successfully constructed by an ionic surfactant-mediated Langmuir-Blodgett (LB) method. The gold film was formed by adding ethanol to a gold colloid/hexane mixture in the presence of dodecyltrimethylammonium bromide (DTAB). Consequently, gold nanoparticles (AuNPs) assembled at the water/hexane interface due to the decrease in surface charge density of AuNPs. Since DTAB binds the gold surface by a coulombic force, rather than a chemical bonding, it is easily replaced by target molecules for SERS purposes. The SERS enhancement factor of the 80 nm gold nanoparticle film was approximately 1.2 × 10(6) using crystal violet (CV) as a Raman dye. The SERS signal from the proposed DTAB-mediated film was approximately 10 times higher than that from the octanethiol-modified gold film, while the reproducibility and stability of this film compared to an octanethiol-modified film were similar. This method can also be applied to other metal nanostructures to fabricate metal films for use as a sensitive SERS substrate with a higher enhancement factor.  相似文献   

5.
A highly reproducible and facile method for formation of ordered 2 dimensional arrays of CTAB protected 50 nm gold nanoparticles bonded to silicon wafers is described. The silicon wafers have been chemically modified with long-chain silanes terminated with thiol that penetrate the CTAB bilayer and chemically bind to the underlying gold nanoparticle. The silicon wafer provides a reproducibly smooth, chemically functionalizable and non-fluorescent substrate with a silicon phonon mode which may provide a convenient internal frequency and intensity calibration for vibrational spectroscopy. The CTAB bilayer provides a potentially biomimetic environment for analyte, yet allows a sufficiently small nanoparticle separation to achieve a significant electric field enhancement. The arrays have been characterized using SEM and Raman spectroscopy. These studies reveal that the reproducibility of the arrays is excellent both between batches (<10% RSD) and across a single batch (<5% RSD). The arrays also exhibit good stability, and the effect of temperature on the arrays was also investigated. The interaction of protein and amino acid with the nanoparticle arrays was investigated using Raman microscopy to investigate their potential in bio-SERS spectroscopy. Raman of phenylalanine and the protein bovine pancreatic trypsin inhibitor, BPTI were studied using 785 nm excitation, coincident with the surface plasmon absorbance of the array. The arrays exhibit SERS enhancements of the order of 2.6 x 10(4) for phenylalanine, the standard deviation on the relative intensity of the 1555 cm(-1) mode of phenylalanine is less than 10% for 100 randomly distributed locations across a single substrate and less than 20% between different substrates. Significantly, comparisons of the Raman spectra of the protein and phenylalanine in solution and immobilized on the nanoparticle arrays indicates that the protein is non-randomly orientated on the arrays. Selective SERS enhancements suggest that aromatic residues penetrate through the bilayer inducing conformational changes in the protein.  相似文献   

6.
Aggregation of gold nanoparticles of increasing size has been studied as a consequence of adsorption of 2-aminothiophenol (ATP) on gold nanoparticle surfaces. The capping property of ATP in the acidic pH range has been accounted from UV-vis absorption spectroscopy and surface-enhanced Raman scattering (SERS) studies. The effect of nanoparticle size (8-55 nm) on the nature of aggregation as well as the variation in the optical response due to variable degree of interparticle coupling effects among the gold particles have been critically examined. Various techniques such as transmission electron microscopy, X-ray diffraction, zeta-potential, and average particle size measurement were undertaken to characterize the nanoparticle aggregates. The aggregate size, interparticle distances, and absorption band wavelengths were found to be highly dependent on the pH of the medium and the concentration of the capping agent, ATP. The acquired SERS spectra of ATP relate the interparticle spacing. It has been observed that the SERS signal intensities are different for different sized gold nanoparticles.  相似文献   

7.
Noble metal nanoparticles (NP) such as gold (AuNPs) and silver nanoparticles (AgNPs) can produce ultrasensitive surface-enhanced Raman scattering (SERS) signals owing to their plasmonic properties. AuNPs have been widely investigated for their biocompatibility and potential to be used in clinical diagnostics and therapeutics or combined for theranostics. In this work, labeled AuNPs in suspension were characterized in terms of size dependency of their localized surface plasmon resonance (LSPR), dynamic light scattering (DLS), and SERS activity. The study was conducted using a set of four Raman labels or reporters, i.e., small molecules with large scattering cross-section and a thiol moiety for chemisorption on the AuNP, namely 4-mercaptobenzoic acid (4-MBA), 2-naphthalenethiol (2-NT), 4-acetamidothiophenol (4-AATP), and biphenyl-4-thiol (BPT), to investigate their viability for SERS tagging of spherical AuNPs of different size in the range 5 nm to 100 nm. The results showed that, when using 785 nm laser excitation, the SERS signal increases with the increasing size of AuNP up to 60 or 80 nm. The signal is highest for BPT labelled 80 nm AuNPs followed by 4-AATP labeled 60 nm AuNPs, making BPT and 4-AATP the preferred candidates for Raman labelling of spherical gold within the range of 5 nm to 100 nm in diameter.  相似文献   

8.
We present a detailed structural and surface-enhanced Raman scattering (SERS) study of poly(allylamine) modified with Os(byp)2ClPyCHO (PAH-Os) and gold nanoparticles self-assembled multilayers [PAH-Os+(Au-nanoparticlesPAH-Os)n, n=1 and 5]. Atomic force microscopy and variable-angle spectroscopic ellipsometry measurements indicate that the first nanoparticle layer grows homogenously by partially covering the substrate without clustering. Analyzing the sample thickness and roughness we infer that the growth process advances thereafter by filling with nanoparticles the interstitial spaces between the previously adsorbed nanoparticles. After five immersion steps the multilayers reach a more compact structure. The interaction between plasmons of near-gold nanoparticles provides a new optical absorption around 650 nm which, in addition, allows a more effective SERS process in that spectral region than at the single-plasmon resonance (approximately 530 nm). We compare the electronic resonance Raman and SERS amplification mechanisms in these self-assembled multilayers analyzing Raman resonance scans and Raman intensity micromaps. As a function of nanoparticle coverage we observe large changes in the Raman intensity scans, with maxima that shift from the electronic transitions, to the plasmon resonance, and finally to the coupled-plasmon absorption. The Raman micromaps, on the other hand, evidence huge intensity inhomogeneities which we relate to "hot spots." Numerical discrete dipole approximation calculations including the interaction between gold nanoparticles are presented, providing a qualitative model for the coupled-plasmon absorption and redshifted Raman hot spots in these samples.  相似文献   

9.
帽状金纳米结构的制备、表征及表面增强拉曼散射活性   总被引:1,自引:0,他引:1  
采用真空离子溅射法在自组装的单层阵列二氧化硅纳米粒子表面沉积金薄膜, 制备了以SiO2为核的帽状金纳米结构. 用透射电镜、扫描电镜、原子力显微镜、X 射线衍射仪和紫外-可见-近红外分光光度计对样品的表面形貌、结构及光学性质进行了表征. 以亚甲基蓝作为探针分子, 对金纳米帽的表面增强拉曼散射活性进行了研究, 结果显示, 吸附在金纳米帽上的分子拉曼散射信号得到显著增强, 增强因子达到107数量级. 该基底在超灵敏生物和化学检测方面具有潜在的应用前景.  相似文献   

10.
Simple wet chemistry has been applied to control the vertical growth of gold nanowires on a glass substrate. As a consequence, the longitudinal localized surface plasmon band position can be tuned from 656 to 1477 nm in a few minutes by simply controlling the growth rate and time. This allowed us to select the optimum conditions for maximum electromagnetic enhancement and performance in surface enhanced Raman scattering (SERS) detection. SERS measurements confirmed the uniform and reproducible distribution of the nanowires on the substrate, with the subsequent high reproducibility of hot spot formation. Detection of malachite green in water and of 1-naphthalenethiol from the gas phase are demonstrated as proof-of-concept applications of these three-dimensional SERS substrates.  相似文献   

11.
Controlling the assembly of the nanoparticles is important because the optical properties of noble metal nanoparticles, such as the surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS), are critically dependent on interparticle distances. Among many approaches available, light-induced disassembly is particularly attractive because it enables spatial modification of the optical properties of nanoparticle assemblies. In this study, we prepare gold nanoparticle (AuNP) aggregates in a gel matrix. Irradiation of the gelated AuNP aggregates at 532 nm leads to the disassembly of the aggregates, changing the color (SPR) from dark blue to red and extinguishing the SERS signal along the irradiated pattern, which opens the possibility of facile fabrication of spatially controlled SERS-generating microstructures. The photoinduced disassembly of the AuNP aggregates in solution is also investigated using UV-vis spectroscopy and transmission electron microscopy.  相似文献   

12.
We have developed a new class of surface-enhanced Raman scattering beacons (SERS beacons) that can be turned on and off by long-range plasmonic coupling, induced by biomolecular recognition and binding events. The beacons are based on colloidal gold nanocrystals in two sizes (40 and 60 nm) and are prepared by spectral encoding with a Raman reporter molecule, functionalized with thiolated DNA probes, and stabilized and protected by low molecular weight poly(ethylene glycol)s (PEGs). The results show the SERS signal intensities increase by 40-200-fold when the nanoparticle beacons are activated by plasmonic coupling, much higher than the bright-to-dark intensity ratios reported for traditional molecular beacons. Multivalent gold nanoparticles also have exquisite specificity and are able to recognize single-base mismatches or mutations. This class of SERS nanoparticle beacons has novel mechanisms for molecular detection and signal amplification, and its long-range coupling nature raises new opportunities in developing plasmonic probes to detect proteins, cells, and intact viruses.  相似文献   

13.
A simple and rapid solution-phase synthesis of dendritic gold nanostructures with hyperbranched architecture is demonstrated in this report. Further investigations revealed that the morphology of the synthesized sample depended on proper parameters such as reagent concentration, reaction temperature, reagent addition sequence and stir. Moreover, the dendritic gold nanostructures exhibited a good electrocatalytic activity toward methanol electro-oxidation. When compared with sea-urchinlike and flowerlike gold nanostructures which were prepared by varying the parameters of experiment, dendritic gold nanostructures showed the highest surface-enhanced Raman scattering (SERS) sensitivity using 4-aminothiophenol (4-ATP) as probe molecules. The dendritic gold nanostructures may find potential applications in catalysis, SERS and biosensor.  相似文献   

14.
One dimensional (1D) nanostructures have many possible applications in electronic, optical, and sensing devices associated with their nanosized lateral dimensions. In this regard, a general and bottom-up strategy to synthesize 1D nanoparticle arrays and conductive nanowires with a facile structural/compositional control is highly desired. We herein report a protein-sheathed single walled carbon nanotube (SWNT) that satisfies the criteria for an ideal template to assemble micron-long gold nanoparticle (AuNP) linear arrays with high structural rigidity. The resulting AuNP array has minimized inter-particle gaps, which is especially useful to template the overgrowth of Ag, Pd, and Pd/Ag metals into continuous nanowires (Au@M, M=Ag, Pd, Ag/ Pd). Our method successfully overcomes the incompatibility between carbon and metal materials, and the resulting superstructured metal nanowires have a tunable diameter below 100 nm and a shape closely replicating a SWNT. The Ag nanowires are composed of coalesced Au@Ag coreshell nanoparticles, while the Pd and Pd/Ag nanowires are made of very fine Pd nanocrystallites around the AuNP cores. These unique structural features are pivotal to various applications including surface enhanced Raman scattering (SERS), electrocatalysis, and gas sensors.  相似文献   

15.
Calixarenes are excellent surfactants for enhancing the dispersion and self-assembly of metal nanoparticles into well-defined structures, particularly those with unit length scales in the 10-100 nm size range. Particles within these ensembles are strongly coupled, giving rise to unique collective optical or magnetic properties. The self-assembled nanostructures described in this feature article include 2D arrays of colloidal Au nanoparticles with size-dependent plasmonic responses, and sub-100 nm Co nanoparticle rings with chiral magnetic states. These nanoparticle assemblies may be further developed for applications in chemical sensing based on surface-enhanced Raman scattering (SERS) and as binary elements for nonvolatile memory, respectively.  相似文献   

16.
Three-layer composite magnetic nanoparticle probes for DNA   总被引:3,自引:0,他引:3  
A method for synthesizing composite nanoparticles with a gold shell, an Fe3O4 inner shell, and a silica core has been developed. The approach utilizes positively charged amino-modified SiO2 particles as templates for the assembly of negatively charged 15 nm superparamagnetic water-soluble Fe3O4 nanoparticles. The SiO2-Fe3O4 particles electrostatically attract 1-3 nm Au nanoparticle seeds that act in a subsequent step as nucleation sites for the formation of a continuous gold shell around the SiO2-Fe3O4 particles upon HAuCl4 reduction. The three-layer magnetic nanoparticles, when functionalized with oligonucleotides, exhibit the surface chemistry, optical properties, and cooperative DNA binding properties of gold nanoparticle probes, but the magnetic properties of the Fe3O4 inner shell.  相似文献   

17.
A new type of encoded bead, which uses surface-enhanced Raman scattering (SERS), is described for multiplex immunoassays. Silver nanoparticles were embedded in sulfonated polystyrene (PS) beads via a polyol method, and they were used as SERS-active substrates. Raman-label organic compounds such as 4-methylbenzenethiol (4-MT), 2-naphthalenethiol (2-NT), and benzenethiol (BT) were then adsorbed onto the silver nanoparticles in the sulfonated PS bead. Although only three kinds of encoding have been demonstrated here, various combinations of these Raman-label organic compounds have the potential to give a large number of tags. The Raman-label-incorporated particles were then coated with a silica shell using tetraethoxyorthosilicate (TEOS) for chemical stability and biocompatibility. The resulting beads showed unique and intense Raman signals for the labeled organic compounds. We demonstrated that SERS-encoded beads could be used for multiplex detection with a model using streptavidin and p53. In our system, the binding event of target molecules and the type of ligand can be simultaneously recognized by Raman spectroscopy using a single laser-line excitation (514.5 nm).  相似文献   

18.
Oligonucleotide-modified nanoparticle conjugates show highly promising potential for SERS-based DNA detection. However, it remains challenging to carry out the SERS-based DNA detection in aqueous solutions directly using oligonucleotide-modified nanoparticles, because the Raman reporters would exhibit lower signals when they are dispersed in aqueous solutions than laid on “dry” metal nanoparticles. Here, we synthesized stable oligonucleotide-modified Ag nanoprism conjugates, and performed SERS-based DNA detection in aqueous solution directly by using such conjugates in combination with Raman reporter-labeled, oligonucleotide-modified gold nanoparticles. The experimental results indicate that this SERS-based DNA detection approach exhibited a good linear correlation between SERS signal intensity and the logarithm of target DNA concentration ranging from 10?11~10?8 M. This sensitivity is comparable to those SERS-based DNA detection approaches with the “dry” process. Additionally, a similar correlation could also be observed in duplex target DNA detection by SERS hybrid probes. Our results suggest that the oligonucleotide-modified Ag nanoprisms may be developed as a powerful SERS-based DNA detection tool.
Scheme of SERS-based DNA detection in aqueous solutions. Capture DNA-modified Ag nanoprisms and Raman reporter-labeled, report DNA-modified gold nanoparticles are utilized in the detection  相似文献   

19.
采用振荡法和种子生长技术制备出核壳结构的Au@SiO2纳米颗粒及夹层结构的Au@SiO2@Ag纳米颗粒, 用HF将Au@SiO2@Ag NPs夹层的SiO2溶解, 得到内部带有粒径为30 nm的可移动金核、壳层厚度约为30 nm的中空银纳米颗粒(Au@air@Ag NPs). 用扫描电子显微镜和透射电子显微镜对所得到的纳米微球的形貌进行了表征, 并以罗丹明B为探针分子研究了Au@air@Ag 纳米颗粒的表面增强拉曼(SERS)效应, 发现Au@air@Ag 纳米颗粒是一种可应用于SERS的理想材料.  相似文献   

20.
We report on silver–gold core-shell nanostructures that contain Methylene Blue (MB) at the gold–silver interface. They can be used as reporter molecules in surface-enhanced Raman scattering (SERS) labels. The labels are stable and have strong SERS activity. TEM imaging revealed that these nanoparticles display bright and dark stripe structures. In addition, these labels can act as probes that can be detected and imaged through the specific Raman signatures of the reporters. We show that such SERS probes can identify cellular structures due to enhanced Raman spectra of intrinsic cellular molecules measured in the local optical fields of the core-shell nanostructures. They also provide structural information on the cellular environment as demonstrated for these nanoparticles as new SERS-active and biocompatible substrates for imaging of live cells.
Figure
The synthesis of MB embedded Ag/Au CS NPs ,and the results of these NPs were used in probing and imaging live cells as SERS labels  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号