首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The combustion of stoichiometric hydrogen-air at various initial pressures was investigated in a 7.62 cm square cross-section channel filled with 1.27 cm diameter beads. The flame time-of-arrival and pressure time history along the channel were obtained by ionization probes and piezoelectric pressure transducers. Flame acceleration was found to be very rapid, e.g. at an initial pressure of 45 kPa the flame achieves a velocity of over 600 m/s in roughly 0.3 m. It was determined that at this high speed a well defined planar shock wave precedes a thick reaction zone. It was also shown that there is a transition in the flame propagation mechanism, similar to that observed in an obstacle laden channel [G. Ciccarelli and C. Johansen, The role of shock-flame interactions on flame acceleration in an obstacle laden channel, Proc. 22nd International Colloquium on the Dynamics of Explosions and Reactive Systems, Minsk, 2009]. By varying the initial pressure of the mixture, changes in the axial location of the transition between combustion propagation regimes was also observed. A soot foil technique was used to identify the transition in the propagation mechanism, as well as to provide information concerning the local flow field around the beads and the overall average flow direction.  相似文献   

2.
In this paper are described experimental observations which are concerned by the propagation of pulsed ultrasonic waves transmitted through a limited one dimensional periodic granular medium submitted to a static force. This study--which is limited to a time domain analysis--exhibits experimental results which depend on the polarization of the acoustic excitation. In the case of compressional excitation, spherical Rayleigh type surface waves propagate around the beads. In the case of shear excitation, the experimental recordings point out the existence of a very low signal, the frequency of which is equal to the cut-off frequency of the chain. Moreover it is established that the frequency value varies with the radius of the bead, the normal force applied to the beads, and the mechanical properties of the material.  相似文献   

3.
The resistance of the flame front within the solid bed constitutes a fundamental and crucial area in porous bed combustion as the flame front propagation is highly related to the productivity and product quality. This paper focuses on the iron ore sintering, a thermal agglomeration process in steel mills. The results from a detailed experimental study of the pilot-scale pot tests under the conditions of a wide range of fuel rate are presented. The primary objective is to provide better understanding of the growth of gas channels relating to melt formation in the flame front and its resistance to flow. The sintering bed was divided into several zones based on the temperature profile and component distribution. Even though there is a continuous one-to-one replacement of humidified zone with porous sintered zone, a constant air flow rate during sintering could be obtained, indicating the ~100?mm high-temperature zone has a controlling effect on sintering bed permeability. The specific pressure drop value in high-temperature zone increases from ~3?kPa in upper bed to ~7?kPa in bottom bed, which varies with the bed temperature and structure properties. Both the green bed and sintered bed were scanned by X-ray computed tomography, the reconstruction and image analysis showed that the sintered bed has large gas channels and many more closed pores due to solid-melt-gas coalescence. More melt is generated when the heat is accumulated along the bed or input higher coke content, showing a propensity to suppress the gas channel growth and amplify the mismatch of gas transportation along the bed. Higher coke rate leads to a higher resistance in flame front, resulting in a slower flame front speed. These results are aimed to provide quantitative validation for improvements of a numerical sintering model in a future work.  相似文献   

4.
5.

The partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics as an effort to develop a prediction model for the turbulent flame lift off. The essence of the flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of the quenching holes initially created by the local quenching events. The numerical simulation for the flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for a constant-density fuel–air channel mixing layer to obtain the background turbulent flow and mixing fields, from which a time series of two-dimensional scalar-dissipation-rate array is extracted. Subsequently, a Lagrangian simulation of the flame hole random walk mapping, projected to the scalar dissipation rate array, yields a temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. In particular, the probability of encountering the reacting state, while conditioned with the instantaneous scalar dissipation rate, is examined to reveal that the conditional probability has a sharp transition across the crossover scalar dissipation rate, at which the flame edge changes its direction of propagation. This statistical characteristic implies that the flame edge propagation instead of the local quenching event is the main mechanism controlling the partial quenching events in turbulent flames. In addition, the conditional probability can be approximated by a heavyside function across the crossover scalar dissipation rate.  相似文献   

6.
Double-diffusive stationary and oscillatory instabilities at the marginal state in a saturated porous horizontal fluid layer heated and salted from above are investigated theoretically under the Darcy's framework for a porous medium. The contributions of Soret and Dufour coefficients are taken into account in the analysis. Linear stability analysis shows that the critical value of the Darcy-Rayleigh number depends on cross-diffusive parameters at marginally stationary convection, while the marginal state characterized by oscillatory convection does not depend on the cross-diffusion terms even if the condition and frequency of oscillatory convection depends on the cross-diffusive parameters. The critical value of the Darcy-Rayleigh number increases with increasing value of the solutal Darcy-Rayleigh number in the absence of cross-diffusive parameters. The critical Darcy-Rayleigh number decreases with increasing Soret number, resulting in destabilization of the system, while its value increases with increasing Dufour number, resulting in stabilization of the system at the marginal state characterized by stationary convection. The analysis reveals that the Dufour and Soret parameters as well as the porosity parameter play an important role in deciding the type of instability at the onset. This analysis also indicates that the stationary convection is followed by the oscillatory convection for certain fluid mixtures. It is interesting to note that the roles of cross-diffusive parameters on the double-diffusive system heated and salted from above are reciprocal to the double-diffusive system heated and salted from below.  相似文献   

7.
Using a general mode for sound reflection from multilayered media,we present in this paper the expressions for sound reflection and transmissioncoefficients on void-containing interface layer in solid and derive the character-istic equation for symmetric and antisymmetric modes of the interface wavesalong the layer.The method for evaluating the effective elastic moduli ofvoid-containing solid is also introduced.The numerical calculation given in thispaper shows the influences of the void volume concentration and layer thick-ness on the sound reflection coefficients and interface wave velocity,providing atheoretical basis for inverse of the mechanical properties of void-containinglayer based on the ultrasonic measurement.  相似文献   

8.
This paper aims at the theoretical analysis of the propagation of shear horizontal waves in an ultra-thin plate-like film with nano-scale thickness via the surface elasticity theory. Both the surface and the bulk of the material are assumed to be isotropic and linearly elastic. The governing equations with non-classical boundary conditions are derived. Numerical calculations are performed for the first few symmetric and antisymmetric modes of shear horizontal waves. It is found that the surface effects become significant with the decrease of the film thickness. In contrast to the classical case, all the modes in the thin film at nano-scale are dispersive. A special symmetric mode appears and stays close to the descending first antisymmetric mode. They may escape and stop propagating above certain frequencies.  相似文献   

9.
《Physics letters. A》2020,384(14):126267
The propagation of an intense laser beam in an alternating corrugated plasma channel, which has a wide region and a narrow region in one corrugated space period, is investigated. Compared with the usual corrugated plasma channel, it is found that there are many more resonance peaks and many more abundant beat-like wave phenomena for the laser beam in this extended channel. Moreover, the much narrower region in some special alternating corrugated channels can play the role like a plasma lens for some laser beams, i.e., it can obviously change the laser spot size from small (large) to large (small) amplitude when the laser passes through the narrow region. These results are well confirmed by the final numerical simulations of wave equation and particle-in-cell approach.  相似文献   

10.
11.
12.
We analyze the effects of non-Kolmogorov turbulence on the orbital angular momentum of a photon-beam propagation through atmosphere. The probability models of the orbital angular momentum crosstalk for single photons propagation in the channel with the non-Kolmogorov turbulence aberration have been established. It is found that the crosstalk among orbits increases as the orbital angular momentum quantum number of launch beam rises, the ground turbulence strength ${C_n^{2} \left( 0 \right)}$ enhances or the non-Kolmogorov parameter α of turbulence-channel increases. As non-Kolmogorov parameter α approaches 4, the crosstalk probabilities among neighbor orbits are approximately the same.  相似文献   

13.
The forced convection heat transfer and laminar flow in a two-dimensional microchannel filled with a porous medium is numerically investigated. The nano-particles which have been used are multi walled carbon nano-tubes (MWCNT) suspended in oil as the based fluid. The assumption of no-slip condition between the base fluid and nano-particles as well as the thermal equilibrium between them allows us to study the nanofluid in a single phase. The nanofluid flow through the microchannel has been modeled using the Darcy–Forchheimer equation. It is also assumed that there is a thermal equilibrium between the solid phase and the nanofluid for energy transfer. The walls of the microchannel are under the influence of a fluctuating heat flux. Also, the slip velocity boundary condition has been assumed along the walls. The effects of Darcy number, porosity and slip coefficients and Reynolds number on the velocity and temperature profiles and Nusselt number will be studied in this research.  相似文献   

14.

Objective

Applying shock waves to the heart has been reported to stimulate the heart and alter cardiac function. We hypothesized that shock waves could be used to diagnose regional viability.

Method

We used a Langendorff model to investigate the acute effects of shock waves at different energy levels and times related to systole, cycle duration and myocardial function.

Results

We found only a small time window to use shock waves. Myocardial fibrillation or extrasystolic beats will occur if the shock wave is placed more than 15 ms before or 30 ms after the onset of systole. Increased contractility and augmented relaxation were observed after the second beat, and these effects decreased after prolonging the shock wave delay from 15 ms before to 30 ms after the onset of systole. An energy dependency could be found only after short delays (−15 ms). The involved processes might include post-extrasystolic potentiation and simultaneous pacing.

Conclusion

In summary, we found that low-energy shock waves can be a useful tool to stimulate the myocardium at a distance and influence function.  相似文献   

15.
黄德财  陈伟中  杨安娜  孙敏  胡凤兰  赵敏 《物理学报》2014,63(15):154502-154502
采用分子动力学方法模拟研究了孤立波在重轻颗粒相间排列的一维复合颗粒链中的传播特性.结果发现,在轻重颗粒的质量比较大或较小时,散射作用较弱,颗粒的速度和孤立波的速度衰减较慢.在轻重颗粒的质量比为中等时,散射作用较强,颗粒的速度和孤立波的速度衰减较快.孤立波在通过重-轻颗粒界面时,存在有增速效应,可以提高孤立波的传播速度.并且,轻重颗粒的质量比越小增速效应越强.在散射作用和增速效应的共同作用下,改变轻重颗粒的质量比可以调控孤立波在重-轻颗粒链中的传播时间.  相似文献   

16.
G.A. Hoshoudy 《Physics letters. A》2009,373(30):2560-2567
Quantum effect on Rayleigh-Taylor instability of stratified plasma layer through a porous medium are investigated. The linear growth rate is obtained analytically and is analyzed. In the presence of quantum effect, both the porosity of porous medium and the medium permeability has different influence on the coup point () for stability, but they do not have influence on the critical point () for stability. The quantum effect plays the principal role of the complete stability case for the system considered.  相似文献   

17.
高能激光的发展对光学元件的抗损伤能力要求越来越高,其中光学薄膜是最薄弱的环节之一。实验研究了激光的聚焦位置对石英基片上HfO2/SiO2减反射薄膜损伤形貌的影响,研究发现:激光等离子体的高压冲击波对薄膜产生强烈的冲击剥离效应,其压强随膨胀半径的增加而迅速减小。激光等离子体光谱的辐射波长小于入射激光波长,这会增强薄膜对辐射光能量的吸收;位于深紫外波段、能量大于HfO2薄膜带隙的光子能量,将被薄膜直接吸收,从而加剧薄膜的电离破坏。激光等离子体的辐射效应和冲击波效应的共同作用决定了薄膜的损伤形貌。当激光聚焦到薄膜表面时,冲击波压强极大会使薄膜发生大面积的电离去除,同时基底发生击穿;当两者距离大到一定距离时,冲击波只会使得中心处小面积薄膜发生剥离,基底未出现断裂。  相似文献   

18.
蔡学军 《大学物理》2002,21(11):30-32
介绍一种新的小型演示仪器,该仪器用于普通物理光学教学,能形象生动地演示单轴晶体中的光轴,主平面,o光和e光的波面,o光和e光各自的电矢量的反动方向,速率大小关系,并能灵活地结合课堂教学各种实例说明在不同条件下,双折射的产生及其原因。  相似文献   

19.
有粘弹薄层负载时薄板中的Lamb波传播   总被引:1,自引:1,他引:0  
陆毅  朱云  朱哲民  毛一葳 《声学学报》2006,31(4):355-362
从弹性波理论出发,结合边界条件,导出了一面有粘弹薄层负载时薄板中Lamb波的色散方程,通过数值计算,研究了薄板中Lamb波传播色散、衰减等特性及负载层参数对Lamb波传播的影响。最后提出了一种结合Lamb波和SH波微传感实现粘弹薄膜材料复Lamē参数λ*μ*的定征方法。  相似文献   

20.
Na-Na Su 《中国物理 B》2023,32(1):14301-014301
To study the damage to an elastic cylinder immersed in fluid, a model of an elastic cylinder wrapped with a porous medium immersed in fluid is designed. This structure can both identify the properties of guided waves in a more practical model and address the relationship between the cylinder damage degree and the surface and surrounding medium. The principal motivation is to perform a detailed quantitative analysis of the longitudinal mode and flexural mode in an elastic cylinder wrapped with a porous medium immersed in fluid. The frequency equations for the propagation of waves are derived each for a pervious surface and an impervious surface by employing Biot theory. The influences of the various parameters of the porous medium wrapping layer on the phase velocity and attenuation are discussed. The results show that the influences of porosity on the dispersion curves of guided waves are much more significant than those of thickness, whereas the phase velocity is independent of the static permeability. There is an apparent "mode switching" between the two low-order modes. The characteristics of attenuation are in good agreement with the results from the dispersion curves. This work can support future studies for optimizing the theory on detecting the damage to cylinder or pipeline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号