首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper is based on some fundamental concepts im [7], Clarke’s generalizedderivatives,as well as Lasotra’s and Strauss’s definitions of differential D(x) of amultivalued function f(x).Thereby,the generalized derivatives of a region function F(x) isdefined asD_F(x)=U∩{G(x)(?)B(R), (?)x∈B(R); G(x)=F’_x=F’(x)}The existence of the generalized derivatives of a region function F(x) is discussed:thenecessary and sufficient conditions of existence of the Fréchet generalized derivatives ofsuch a function is established.  相似文献   

2.
The USM-θmodel of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extra term of Bingham fluid yield stress are taken into account. An algorithm for USM-θmodel in dense two-phase flow was proposed, in which the influence of particle volume fraction is accounted for. This model was used to simulate turbulent flow of Bingham fluid single-phase and dense liquid-particle two-phase in pipe. It is shown USM-θmodel has better prediction result than the five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while the turbulence of both phase is simulated by the two-equation turbulence model. The USM-θmodel was then used to simulate the dense two-phase turbulent up flow of Bingham fluid with particles. With the increasing of the yield stress, the velocities of Bingham and particle decrease near the pipe centre. Comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow.  相似文献   

3.
We study the action of an electric field on a Bingham fluid from the point of view of existence and uniqueness of solutions. We also give an upper bound for the stopping time.  相似文献   

4.
针对前苏联学求解宾汉流体布金汉方程的阻力近似解公式,其与精确解最大偏差为6.7%,首次通过数学分析和三维优化计算,改变公式中的参数,使偏差大幅度降低.偏差是参数和核心流相对半径r^-O的函数,用极限判定了在r^-O闭区间内的连续性和间断点,为降低偏差提供了依据.绘制了偏差三维变化图,应用切片平面解决了多峰曲面的极值问题.最终优化出的参数使公式的最大偏差为2.6%,比6.7%降低了4.1%,优化后的公式,在管道输送阻力计算中更有实用价值.  相似文献   

5.
In this work a comparative study of two versions of the projection algorithm used either for time integration or as an iterative method to solve the three‐dimensional incompressible Navier–Stokes equations is presented. It is also shown that these projection algorithms combined with the finite element method are particularly suited for the treatment of outflow boundary conditions in the context of external flows. This assertion is illustrated by means of some numerical examples in which five types of boundary conditions are compared. The scheme is applied to simulate the flow past a cylinder clamped on two fixed parallel solid walls. Comparison with experimental data available for this problem shows good agreement of the velocity and pressure fields, both computed with continuous piecewise linear elements. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
The duct flow of Bingham plastic fluids is analysed with the variational inequality-based finite element method. The problem of tracking the yield surface is solvable through the regularization technique which can be easily incorporated into the existing finite element code. The existence theorem of this method was established through the theory of variational inequalities. A small positive constant is added to the second shear rate invariant, resulting in an apparent viscosity of finite magnitude in the unyielding plug zone. This makes the minimization of the non-differential variational integral possible. In order to achieve convergence at small regularization parameter, a zero-order continuation is employed. It is also shown that a fine tessellation of the flow domain is necessary for tracking the yield surfaces unambiguously. Two classes of duct flow, namely axial flows in eccentric annuli and in an L-shaped duct, were investigated. In both cases it was easy to show the presence of the mobile plugs around the duct centres from the axial velocity profiles; however, the stagnant plugs at the narrow side in eccentric annuli with large eccentricity and near the apex of right-angled corners in an L-shaped duct could only be identified from the calculation of the distributions of the second shear rate or shear stress invariant. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
We study the peristaltic transport of a Bingham fluid in a channel with small aspect ratio whose walls behave as a periodic traveling wave. The governing equations in the unyielded phase are obtained writing the integral formulation for the momentum balance. As shown in Fusi et al. (2015), this approach allows to overcome the so-called “lubrication paradox” which may arise in the thin film approximation. We consider the case in which the inlet flux is prescribed and the one in which the flow is driven by a given pressure drop. In both cases the solution of the problem is determined solving a nonlinear integral equation for the yield surface. We perform some numerical simulations to illustrate the behavior of the yield surface, assuming that the traveling wave describing the peristaltic motion has a sinusoidal shape.  相似文献   

8.
We present new results on the nonlinear stability of Bingham fluid Poiseuille flows in pipes and plane channels. These results show that the critical Reynolds number for transition, Rec, increases with Bingham number, B, at least as fast as RecB1/2 as B→∞. Estimates for the rate of increase are also provided. We compare these bounds and existing linear stability bounds with predictions from a series of phenomenological criteria for transition, as B→∞, concluding that only Hanks [AIChE J. 9 (1963) 306; 15 (1) (1963) 25] criteria can possibly be compatible with the theoretical criteria as B→∞. In the more practical range of application, 0≤B≤50, we show that there exists a large disparity between the different phenomenological criteria that have been proposed.  相似文献   

9.
This paper develops a theoretical analysis of a Bingham fluid in slipping squeeze flow. The flow field decomposition consists in combining a central extensional flow zone in the plane of symmetry and shear flow zones near the plates. It is also considered that the slipping zone is located around a central sticking zone as previously shown from experiments. It is assumed that the shear stress at the plates is constant in the slipping zone and equals a fixed friction yield value. The squeeze force required to compress a Bingham fluid under the slipping behaviour as well as the radial evolution of the transition point between both sticking and slipping zones are finally determined.  相似文献   

10.
The dispersion of a soluble matter in a plastic fluid flowing through a tube and a channel has been analysed by taking into account the variations of viscosity, diffusivity and yield stress. It has been shown that in the special case of a Bingham fluid, surrounded by a peripheral layer of a Newtonian fluid, the effective dispersion coefficient with which the solute disperses across a plane moving with the mean speed of the flow decreases with the viscosity of the peripheral layer fluid but increases as the molecular diffusion coefficient of this layer decreases. Further, the effective dispersion coefficient also decreases as the yield stress of the Bingham fluid increases.  相似文献   

11.
In this paper, a combined Fourier spectral-finite element method is proposed for solving n-dimensional (n=2, 3), semi-periodio compressible fiuid flow problems. The strict error estimation as well as the convergence rate, is presented.  相似文献   

12.
This paper compares the numerical performance of the moment‐of‐fluid (MOF) interface reconstruction technique with Youngs, LVIRA, power diagram (PD), and Swartz interface reconstruction techniques in the context of a volume‐of‐fluid (VOF) based finite element projection method for the numerical simulation of variable‐density incompressible viscous flows. In pure advection tests with multiple materials MOF shows dramatic improvements in accuracy compared with the other methods. In incompressible flows where density differences determine the flow evolution, all the methods perform similarly for two material flows on structured grids. On unstructured grids, the second‐order MOF, LVIRA, and Swartz methods perform similarly and show improvement over the first‐order Youngs' and PD methods. For flow simulations with more than two materials, MOF shows increased accuracy in interface positions on coarse meshes. In most cases, the convergence and accuracy of the computed flow solution was not strongly affected by interface reconstruction method. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

13.
The planar contraction flow is a benchmark problem for the numerical investigation of viscoelastic flow. The mathematical model of three‐dimensional viscoelastic fluids flow is established and the numerical simulation of its planar contraction flow is conducted by using the penalty finite element method with a differential Phan‐Thien–Tanner constitutive model. The discrete elastic viscous split stress formulation in cooperating with the inconsistent streamline upwind scheme is employed to improve the computation stability. The distributions of velocity and stress obtained by simulation are compared with that of Quinzani's experimental results detected by laser–doppler velocimetry and flow‐induced birefringence technologies. It shows that the numerical results agree well with the experimental results. The numerical methods proposed in the study can be well used to predict complex flow patterns of viscoelastic fluids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
I.IntroductionBinghamfluidisonebranchofnon-Newtonianfluid,suchascrudeparaffinoil,highsediment--ladenwaterflow,highconcentrationmudandthelikewhicharetransportedinpipelinesinmanyindustries,soit'sofgreatsignificancetostudytheflowmechanismsofBinghamfluid.Tsaietal.II]studiedthelinkagebetweenBinghamfluidandpluggedflow.Wangetal.I2]measuredtheturbulencestructureofBinghammud.Mengetal.[3]researchedthekineticenergycorrectionfactorofBinghamfluidinacircularpipe.However,thestudyofBinghamfluidsofarisn't…  相似文献   

15.
A numerical algorithm to study the boundary‐value problem in which the governing equations are the steady Euler equations and the vorticity is given on the inflow parts of the domain boundary is developed. The Euler equations are implemented in terms of the stream function and vorticity. An irregular physical domain is transformed into a rectangle in the computational domain and the Euler equations are rewritten with respect to a curvilinear co‐ordinate system. The convergence of the finite‐difference equations to the exact solution is shown experimentally for the test problems by comparing the computational results with the exact solutions on the sequence of grids. To find the pressure from the known vorticity and stream function, the Euler equations are utilized in the Gromeka–Lamb form. The numerical algorithm is illustrated with several examples of steady flow through a two‐dimensional channel with curved walls. The analysis of calculations shows strong dependence of the pressure field on the vorticity given at the inflow parts of the boundary. Plots of the flow structure and isobars, for different geometries of channel and for different values of vorticity on entrance, are also presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Numerical simulations have been used to study the flow of a Bingham viscoplastic fluid around a circular cylinder in an infinite medium with negligible inertia effects. Papanastasiou's regularisation technique has been adopted to approximate the model. The case corresponding to preponderant plasticity effects has been particularly studied and convergence of the solutions examined in detail. The flow kinematics and stresses have been determined. The rigid zones have been identified and characterised. At large Oldroyd numbers, when plasticity effects become preponderant, a viscoplastic boundary layer appears around the cylinder. The characteristics of this viscoplastic boundary layer are quantified. The results are compared with existing theoretical results, concerning particularly the predictions of the viscoplastic boundary layer theory and the plasticity theory.  相似文献   

17.
膛口反应流并行数值模拟   总被引:1,自引:0,他引:1  
郭则庆  姜孝海  王杨 《计算力学学报》2013,30(1):111-116,123
采用轴对称多组分N-S方程对含有高速运动弹丸的膛口反应流进行了数值模拟.控制方程采用时间分裂方法并在大型计算机上采用MPI方法进行多核并行求解,其中对流项采用二阶AUSM+格式和MUSCL插值方法进行处理,燃气采用氢气-空气混合气,反应机理为9组分19步基元反应.对于弹丸引起的网格运动,采用嵌套网格法处理.并行验证算例与串行计算结果一致,采用20个CPU计算时效率为64%.根据数值结果详细讨论了发射过程中的气体动力学和化学动力学过程,并且通过对两种条件下的计算结果比较分析了化学反应对膛口流场发展的影响.结果表明,上述算法能够较为正确地模拟弹丸和化学反应对膛口流场的影响,并大大提高了计算速度.  相似文献   

18.
This paper presents a numerical study for the unsteady flow of a magnetohydrodynamic (MHD) Sisko fluid in annular pipe. The fluid is assumed to be electrically conducting in the presence of a uniform magnetic field. Based on the constitutive relationship of a Sisko fluid, the non‐linear equation governing the flow is first modelled and then numerically solved. The effects of the various parameters especially the power index n, the material parameter of the non‐Newtonian fluid b and the magnetic parameter B on the flow characteristics are explored numerically and presented through several graphs. Moreover, the shear‐thinning and shear‐thickening characteristics of the non‐Newtonian Sisko fluid are investigated and a comparison is also made with the Newtonian fluid. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A novel parallel monolithic algorithm has been developed for the numerical simulation of large‐scale fluid structure interaction problems. The governing incompressible Navier–Stokes equations for the fluid domain are discretized using the arbitrary Lagrangian–Eulerian formulation‐based side‐centered unstructured finite volume method. The deformation of the solid domain is governed by the constitutive laws for the nonlinear Saint Venant–Kirchhoff material, and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. A special attention is given to construct an algorithm with exact total fluid volume conservation while obeying both the global and the local discrete geometric conservation law. The resulting large‐scale algebraic nonlinear equations are multiplied with an upper triangular right preconditioner that results in a scaled discrete Laplacian instead of a zero block in the original system. Then, a one‐level restricted additive Schwarz preconditioner with a block‐incomplete factorization within each partitioned sub‐domains is utilized for the modified system. The accuracy and performance of the proposed algorithm are verified for the several benchmark problems including a pressure pulse in a flexible circular tube, a flag interacting with an incompressible viscous flow, and so on. John Wiley & Sons, Ltd.  相似文献   

20.
黏性不可压缩流体流动前沿的数值模拟   总被引:1,自引:0,他引:1  
曹伟 《力学学报》2004,36(5):583-588
提出了模拟注射成型中黏性、不可压缩流体流动前沿的新方法. 将Hele-Shaw流动应用于非 等温条件下的黏性、不可压缩流体,建立了流动分析模型,用充填因子的输运方程描述流动 前沿. 应用高阶Taylor展开式计算每一时间步长的充填因子,用Galerkin方法导出了计算 充填因子各阶导数的递推公式. 给出了时间增量的选取方法,证明了它的稳定性. 针对Han 设计的试验模具,用相同的材料及工艺条件模拟充填过程,比较了传统方法和该方法的模 拟结果与实验结果的差异. 算例分析表明,该方法可以有效地提高注射成型中流动前沿的 模拟精度和计算效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号