首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possible reactions of HO2 with five ketones were studied using a flow tube reactor equipped with a laser magnetic resonance detector. We did not observe reactive loss of HO2 in any of the five reactions. We place upper limits of <8 × 10−16, <7 × 10−16, <5 × 10−16, <4 × 10−16, and <9 × 10−16 (in units of cm3; molecule−1 S−1) at 298 K for the reactions of HO2 with CH3COCH3, CH3COC2H5, CH3COC3H7, C2H5COC2H5, and CH3COC4H9, respectively, to give products other than an adduct. We conclude that their reactions with HO2 are unlikely to be important loss processes for ketones in the atmosphere. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 573–580, 2000  相似文献   

2.
The rotational spectra of the isotopically substituted free fluoroformyloxyl radical FC(18)O(2·) were measured using the Prague millimeter-wave high-resolution spectrometer. More than 110 rotational-fine-hyperfine transition lines were observed and assigned to appropriate quantum numbers in the frequency range of 235-270 GHz. The obtained transition frequencies were analyzed with standard effective Hamiltonians to acquire a set of precise rotational, centrifugal-distortion, fine, and hyperfine structure molecular constants. Merging the new FC(18)O(2·) isotopologue molecular parameters with those previously obtained for the ordinary FC(16)O(2)[middle dot] radical, the substitution molecular geometry in the ground vibronic state was evaluated. The molecular parameters for both radical isotopologues were also calculated by several quantum chemistry methods and their calculated mutual ratios are in remarkable agreement with the experimental FC(16)O(2·)/FC(18)O(2·) parameter ratios. The measurements, assignments of the 18-oxygen isotopologue FC(18)O(2·) radical millimeter-wave transitions, as well as the derivation of the fluoroformyloxyl radical ground-state geometry have been carried out for the first time.  相似文献   

3.
The concentration of O2 ? radical anions generated on the surface of hydrated ZrO2 in an H2O2 solution was found to depend on H2O2 concentration. It was shown that this method can be used for detecting H2O2 in solutions at concentration as low as 0.01 wt%. The radical anions were found to react with organic molecules, even at room temperature. The decomposition kinetics of O2 ? radical anions was double-exponential with two reaction rate constants. The existence of two distinct rate constants suggests that two types of O2 ? radical anions with similar spectroscopic properties but different reactivity are present on the surface of hydrated ZrO2. It is highly likely that different arrangements of hydroxyl groups near the radical anions account for the presence of the two types of O2 ? with different reactivity. The rate constants obtained in the presence of the organic compounds studied were found to conform with the expected order of reactivity: toluene > benzene ? hexane.  相似文献   

4.
《European Polymer Journal》1986,22(6):427-430
13C-NMR spectroscopy has been used for examination of 2-cyano-2-propyl end-groups in copolymers of styrene (STY) with methacrylonitrile (MAN) and with vinyl acetate (VAC) prepared at 100° using as initiator 2-cyano-2-propylazoformamide enriched in its methyl groups with carbon-13. It is deduced that at 100° STY is twice as reactive as MAN and 20 times as reactive as VAC towards the (CH3)2C(CN) radical. There is discussion of the relation between these results and those for the same systems at 60°.  相似文献   

5.
《Chemical physics letters》1986,123(5):405-408
Ab initio molecular orbital calculations on the transition states and barrier heights for the addition of atomic hydrogen to silaethylene are carried out. The activation energy for the addition to the silicon site is lower than that to the carbon site, while the exothermicity is smaller.  相似文献   

6.
While N-heterocyclic carbene(NHC)catalyzed electron-pair-transfer processes have been developed into an important tool for synthetically important bond formations during the past decades,the corresponding radical reactions via NHC catalysis have only received growing attention in the past six years.Taking into account the advantages NHC-catalyzed radical reactions might bring,such as creating new activation modes that were previously unobtainable,it is worthwhile to provide a conceptual understanding of this emerging area.Therefore,herein we give an overview of NHC-catalyzed radical reactions via different synthetic techniques.  相似文献   

7.
Studies of stereocontrol in two types of radical equivalents of Mannich addition reactions offer new insights for application to aminosugar synthesis. In the first method, haloacetal addition (Ueno-Stork reaction) is extended to dihydroxyhydrazones, leading to an adduct with the unexpected 3-epi-l-daunosamine configuration. A neighboring α-benzyloxy substituent causes a dramatic reversal of stereocontrol compared with hydrazones where this substituent is absent; vicinal dipole repulsion is proposed to account for the diastereoselectivity. In the second method, radical addition-cyclization with thiophenol and treatment with fluoride leads to diastereoselective group transfer from a silicon-tethered ethynyl group to the CN bond of hydrazones, affording anti-hydrazino alcohols with a trans-2-(phenylthio)vinyl substituent. The one-pot process occurs under neutral, tin-free radical conditions, and offers stereocontrol which is complementary to the haloacetal method. Synthetic utility of the radical Mannich concept is demonstrated in a brief asymmetric synthesis of N-trifluoroacetyl-l-daunosamine from achiral precursors.  相似文献   

8.
Rate determination and product studies have disclosed that the fragmentation pattern of radical cations 2-propenyl-1,4-dimethoxybenzene (1+ ·) and 2-propenyl-1,4,5-trimethoxybenzene (2) generated in one-electron oxidation of their parent substrates by 4-nitrobenzoyl peroxide (3) in CH3CN is greatly affected by ring-substitution status of the donor molecules. While ringbenzoloxylation (product 5) predominated in the reaction of dimethoxylated substrate (1), the oxidation of trimethoxylated donor 2 ended up with distonic radical cation mediated ,-di-4-nitrobenzoloxylation as the major pathway.  相似文献   

9.
《European Polymer Journal》1985,21(10):865-869
An attempt has been made to establish the dependence on structural parameters of the reactivity of substituted 1,4-benzoquinones as inhibitors in the radical polymerization of styrene. The relative reactivity depends on the redox potential of the quinone and on the size of the ortho-substituents. The steric factor has been separated from the overall reactivity and correlated with the extent of shielding of the reaction centre in the case of substituents of spherical symmetry.  相似文献   

10.
The spin-rovibronic energy levels of the A(2)Π and B(2)Σ(+) electronic states of thiocyanate radical have been calculated variationally, using high-level ab initio coupled diabatic potential energy surfaces. Computations up to J = 7∕2 have been performed, obtaining all levels with K ≤ 3 (Σ(1/2),Π(1/2,3/2),Δ(3/2,5/2),Φ(5/2,7/2)), for energies up to 2000 cm(-1) above the A(000)(2)Π(3∕2) level. The available experimental data have been critically reviewed in the light of the theoretical findings.  相似文献   

11.
12.
Radical cations of various 3-methylalkanes (C6-C14) have been produced and stabilized by γ-irradiation of the corresponding neutral compounds in saturated chloroflourocarbon (1,1-diflourotetra-chloroethane and 1,1,2-trichlorotriflouroethane) and perflourocarbon (perflourohexane and perfluoro-methylcyclohexane) matrices at 77 K. The perfluorocarbon matrices appeared more suitable for studies of the lighter radical cations, whereas the chlorofluorocarbon matrices were more suited for studies of the heavier radical cations; intermediary cations could be studied in both types of matrices. After irradiation, electronic absorptions associated with both the matrix and the alkane additive were observed. Pure spectra of the 3-methylalkane radical cations were obtained by difference spectrometry, after selective elimination of these cations by illumination. The electronic absorption spectra of the 3-methylalkane radical cations consist in all cases of a single broad absorption band. The spectral position of this band shifts to longer wavelengths with increasing chain length; the maximum of the absorption band was found to be situated at 490 nm for 3-methylpentane radical cations and at 940 nm for 3-methyltridecane radical cations. The results are most interesting because they give direct information on the electronic absorption of 3-methylpentane radical cations. It was found that the molar extinction coefficients of these cations are not very much smaller than those of other 3-methylalkane radical cations and thus must be of the order of 103dm3·mol-1·cm-1. From this it is deduced that the majority of positive ions trapped in irradiated pure 3-methylpentane glasses at 77 K are not parent cations.  相似文献   

13.
The mobility of the radical center in three isomeric triglycine radical cations[G(*)GG](+), [GG(*)G](+), and [GGG(*)](+) has been investigated theoretically via density functional theory (DFT) and experimentally via tandem mass spectrometry. These radical cations were generated by collision-induced dissociations (CIDs) of Cu(II)-containing ternary complexes that contain the tripeptides YGG, GYG, and GGY, respectively (G and Y are the glycine and tyrosine residues, respectively). Dissociative electron transfer within the complexes led to observation of [Y(*)GG](+), [GY(*)G](+), and [GGY(*)](+); CID resulted in cleavage of the tyrosine side chain as p-quinomethide, yielding [G(*)GG](+), [GG(*)G](+), and [GGG(*)](+), respectively. Interconversions between these isomeric triglycine radical cations have relatively high barriers (> or = 44.7 kcal/mol), in support of the thesis that isomerically pure [G(*)GG](+), [GG(*)G](+), and [GGG(*)](+) can be experimentally produced. This is to be contrasted with barriers < 17 kcal/mol that were encountered in the tautomerism of protonated triglycine [Rodriquez C. F. et al. J. Am. Chem. Soc. 2001, 123, 3006-3012]. The CID spectra of [G(*)GG](+), [GG(*)G](+), and [GGG(*)](+) were substantially different, providing experimental proof that initially these ions have distinct structures. DFT calculations showed that direct dissociations are competitive with interconversions followed by dissociation.  相似文献   

14.
[reaction: see text] A new synthetic methodology is reported that takes advantage of the persistent free radical effect (PFRE), where clean products can be obtained in good yields from radical cross-combination reactions, despite their reputation for being of little synthetic value and for resulting in complex mixtures; these problems can be avoided when the PFRE is used as a synthetic tool.  相似文献   

15.
16.
Hydroxylation of 3-nitrotyrosine (3-NT) and 3-NT containing peptide Gly-nitroTyr-Gly in aqueous solution by hydroxyl radical were investigated with gamma irradiation. The structures of the hydroxylated products were confirmed by electrospray ionization mass spectrometry and 1H NMR spectrometry. The reactivity of 3-nitrotyrosine has been investigated using density functional theory (DFT) calculation.  相似文献   

17.
Ab initio molecular orbital and hybrid density functional methods have been employed to characterize the structure and bonding of (H2O-H2S)+, an asymmetrical dimer radical cation system. A comparison has been made between the two-center three-electron (2c-3e) hemi-bonded system and the proton-transferred hydrogen-bonded systems of (H2O-H2S)+. Geometry optimization of these systems was carried out using unrestricted Hartree Fock (HF), density functional theory with different functionals, and second-order M?ller-Plesset perturbation (MP2) methods with 6-311++G(d,p) basis set. Hessian calculations have been done at the same level to check the nature of the equilibrium geometry. Energy data were further improved by calculating basis set superposition error for the structures optimized through MP2/6-311++G(d,p) calculations. The calculated results show that the dimer radical cation structure with H2O as proton acceptor is more stable than those structures in which H2O acts as a proton donor or the 2c-3e hemi-bonded (H2O thereforeSH2)+ system. This stability trend has been further confirmed by more accurate G3, G3B3, and CCSD(T) methods. On the basis of the present calculated results, the structure of H4OS+ can best be described as a hydrogen-bonded complex of H3O+ and SH with H2O as a proton acceptor. It is in contrast to the structure of neutral (H2O...H2S) dimer where H2O acts as a proton donor. The present work has been able to resolve the ambiguity in the nature of bonding between H2O and H2S in (H2O-H2S)+ asymmetrical dimer radical cation.  相似文献   

18.
19.
High resolution infrared spectra for four (2)Π-(2)Σ(+) bands of jet-cooled ethynyl radical (i.e., C(2)H) in the gas phase are reported. The combination of (i) slit-jet cooling (T(rot) ≈ 12 K) and (ii) sub-Doppler resolution (≈ 60 MHz) permits satellite branches in each (2)Π-(2)Σ(+) band to be observed and resolved for the first time as well as help clarify a systematic parity misassignment from previous studies. The observed lines in each band are least squares fit to a Hamiltonian model containing rotational, spin-rotational, spin-orbit, and lambda-doubling contributions for the (2)Π state, from which we report revised excited state constants and band origins for the observed bands. Three of the four bands fit extremely well within a conventional (2)Π model (i.e., σ < 20 MHz), while one band exhibits a local perturbation due to an avoided crossing with a near resonant dark state. Vibronic assignments are given for the observed bands, with the dark state clearly identified as a highly excited stretch and bending overtone level X? (1,2(2),0) by comparison with high level ab initio efforts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号