首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
采用CASPT2/CASSCF方法对HO2自由基进行统计算, 优化了三个电子态的稳定点几何构型, 得到详细的频率数据. 利用垂直激发计算确定了3个里德堡态、11个价电子态的电子结构以及在三种理论水平上(CASSCF, SS-CASPT2和MS-CASPT2)的能量信息. 计算中使用了ANO-L和ANO-L+基组, 验证了已知实验数据的同时, 通过与其它理论计算结果的对比, 揭示了应用弥散轨道系数对于该体系激发态研究的重要性.  相似文献   

2.
Using the complete active space self-consistent field (CASSCF) method with large atomic natural orbital (ANO-L) basis set, four electronic states of the HSO neutral radical are optimized. The vertical transitions of the HSO neutral radical are investigated by using the same method under the basis set of ANO-L functions augmented with a series of adapted 1s1p1d Rydberg functions, through which eight valence states and eight Rydberg states are probed. Ionic states of the HSO neutral radical are extensively studied in both cases of the adiabatic and vertical ionization, from which the relatively complete understanding of ionization energies is given. To include further correlation effects, the second-order perturbation method (CASPT2) is implemented, and the comparison between CASSCF and CASPT2 methods is performed.  相似文献   

3.
采用全活化空间自洽场方法(CASSCF)研究了OClO阴离子7个低能电子态及其自由基的基态. 为了进一步考虑动态电子相关效应, 采用二级多组态微扰理论(CASPT2)获得更加可靠的能量值. 此外, 在ANO-L基组的基础上, 在OClO自由基的电荷中心增加了为研究里德堡态所建立的1s1p1d的波函数, 并应用多组态二级微扰理论(MS-CASPT2)方法获得了里德堡态的准确电子激发能.  相似文献   

4.
The excited valence and Rydberg states of the chiral (4-methylcyclohexylidene) fluoromethane (4MCF) have been investigated using multiconfigurational CASSCF and CASPT2, and coupled-cluster methods (RI-CC2). A 3s Rydberg state is predicted below the valence (1)pipi* state. To gain insight into the photophysics of the cis-trans isomerization of this olefin, potential energy profiles for the valence (10pipi* state along the twisting and pyramidalization reaction coordinates have been computed using variational methods (CASSCF and multireference configuration interaction with singles and doubles (MR-CISD)). Starting from geometries with energies close to degeneracy in the valence and ground-state curves, three minima on the crossing seam that can be correlated with the conical intersections known for fluoroethylene, have been found. On the basis of these features, the photochemistry of 4MCF is discussed.  相似文献   

5.
The all-electron full configuration interaction (FCI) vertical excitation energies for some low lying valence and Rydberg excited states of BeH are presented in this article. A basis set of valence atomic natural orbitals has been augmented with a series of Rydberg orbitals that have been generated as centered onto the Be atom. The resulting basis set can be described as 4s2p1d/2s1p (Be/H) + 4s4p3d. It allows to calculate Rydberg states up to n= {3,4,5} of the s, p, and d series of Rydberg states. The FCI vertical ionization potential for the same basis set and geometry amounts to 8.298 eV. Other properties such as FCI electric dipole and quadrupole moments and FCI transition dipole and quadrupole moments have also been calculated. The results provide a set of benchmark values for energies, wave functions, properties, and transition properties for the five electron BeH molecule. Most of the states have large multiconfigurational character in spite of their essentially single excited nature and a number of them present an important Rydberg-valence mixing that is achieved through the mixed nature of the particle MO of the single excitations.  相似文献   

6.
《Chemical physics letters》2001,331(1-2):155-164
The low-lying singlet excited states of CH2BrCl have been calculated using multiconfigurational CASSCF, second-order perturbation theory CASPT2 and its multistate extension MS-CASPT2. The CASSCF method shows spurious valence–Rydberg mixing and a wrong order of states. Inclusion of dynamical correlation by single root CASPT2 lowers dramatically the energy of the valences states but does not lead to a complete separation between valence and Rydberg states. This situation is improved by the MS-CASPT2 calculations, which gives two valence states for both A and A″ symmetries below the lowest Rydberg state, corresponding to n(Br)→σ*(C–Br) and n(Cl)→σ*(C–Cl) transitions at 6.1 eV (203 nm) and 7.2 eV (173 nm), and being repulsive along C–Br and C–Cl coordinates.  相似文献   

7.
The effect of different basis sets for calculation of the spectroscopic constants of the ground state of sulfur monochloride (SCl) was analyzed using scalar relativistic multireference configuration interaction with single and double excitations plus Davidson correction. Then the generally contracted all-electronic correlation-consistent polarized valence quintuple zeta basis sets were selected to compute the electronic states of SCl including 12 valence and 9 Rydberg lambda-S states. The spin-orbit coupling effect was calculated via the state interaction approach with the full Breit-Pauli Hamiltonian. This effect splits these lambda-S states into 42 omega states. Potential-energy curves of all these states are plotted with the help of the avoided crossing rule between the electronic states of the same symmetry. The structural properties of these states are analyzed. Spectroscopic constants of bound excited states that have never been observed in experiment are obtained. The transition dipole moments and the Franck-Condon factors of several transitions from low-lying bound excited states to the ground state were also calculated.  相似文献   

8.
The Rydberg states in the vacuum ultraviolet photoabsorption spectrum of 1,2,3-triazole have been measured and analyzed with the aid of comparison to the UV valence photoelectron ionizations and the results of ab initio configuration interaction (CI) calculations. Calculated electronic ionization and excitation energies for singlet, triplet valence, and Rydberg states were obtained using multireference multiroot CI procedures with an aug-cc-pVTZ [5s3p3d1f] basis set and a set of Rydberg [4s3p3d3f] functions. Adiabatic excitation energies obtained for several electronic states using coupled-cluster (singles, doubles, and triples) and complete active space self-consistent field procedures agree well with experimental values. Variations in bond lengths with the electronic state are discussed. The lowest energy UV band (~5.5-6.5 eV) is assigned to three electronically excited states and demonstrates the occurrence of a nonplanar upper state on the low energy side. A UV photoelectron spectrum with an improved resolution yielded adiabatic and vertical ionization energies and reorganization energies for several of the lowest cationic states. As well as excitations to the s, p, d-Rydberg states are the excitations consistent with an f-series.  相似文献   

9.
10.
Generalized van Vleck perturbation theory (GVVPT2) for molecular electronic structures is applied to examine the azabenzene series: benzene, pyridine, pyrazine, symmetric triazine and symmetric tetrazine. The spectra of azabenzenes are complex with large numbers of excited states at low energies comprising n --> pi* and pi --> pi* excited states and also doubly excited states of the n,n --> pi*,pi* type. The calculations are complicated due to strong correlation effects in the nitrogen lone-pair orbitals and the pi electrons. This study is the first to use GVVPT2 on conjugated systems. Comparison is made with experimental data and complete active space second-order perturbation theory, equation of motion coupled cluster and similarity transformed equation of motion coupled cluster theory data. Using polarized valence double split basis sets for benzene and pyrazine (cc-pVDZ) and pyridine (ANO-S) and polarized triple split basis sets (ANO-L) for triazine and tetrazine, the n --> pi* and pi --> pi* states are computed with an average error of 0.28 eV in comparison with available experimental data.  相似文献   

11.
A continuum model describing highly excited (Rydberg) electronic states in clusters composed of polar molecules was proposed. On the basis of this model, the wave functions of Rydberg electronic states of clusters were calculated for a wide range of characteristic cluster parameters. These states are not hydrogen-like and can be described using the quantum defect theory. This fact indicates that radiative transitions can be forbidden within certain ranges of cluster parameters. The quantum defects in clusters and the lifetimes of different states were calculated. The possibility of formation of metastable Rydberg states and anomalous spectral characteristics of Rydberg clusters was shown.  相似文献   

12.
Excited-state geometries and electronic spectra of butadiene, acrolein, and glyoxal have been investigated by the symmetry adapted cluster configuration interaction (SAC-CI) method in their s-trans conformation. Valence and Rydberg states below the ionization threshold have been precisely calculated with sufficiently flexible basis sets. Vertical and adiabatic excitation energies were well reproduced and the detailed assignments were given taking account of the second moments. The deviations of the vertical excitation energies from the experiment were less than 0.3 eV for all cases. The SAC-CI geometry optimization has been applied to some valence and Rydberg excited states of these molecules in the planar structure. The optimized ground- and excited-state geometries agree well with the available experimental values; deviations lie within 0.03 A and 0.7 degrees for the bond lengths and angles, respectively. The force acting on the nuclei caused by the excitations has been discussed in detail by calculating the SAC-CI electron density difference between the ground and excited states; the geometry relaxation was well interpreted with the electrostatic force theory. In Rydberg excitations, geometry changes were also noticed. Doubly excited states (so-called 2 (1)A(g) states) were investigated by the SAC-CI general-R method considering up to quadruple excitations. The characteristic geometrical changes and large energetic relaxations were predicted for these states.  相似文献   

13.
14.
The electronic structure of the ground electronic state and of some special charge-transfer excited states in ionic solids is examined from the ab initio cluster model approach. Different ab initio wave functions, including a frozen orbital approach, the Hartree–Fock self-consistent field, and multireference configuration interaction wave functions, are considered and analyzed using different theoretical techniques. We explicitly consider some alkaline–earth oxides such as CaO, a more difficult case such as A12O3, a transition-metal oxide such as NiO, and a system with a more complicated structure such as KNiF3. Analysis of ab initio wave functions in terms of valence bond components shows that all these compounds are largely ionic, thus supporting the simple picture arising from the ionic model. However, the nature of the excited states is more complex. Alkaline–earth oxides lowest excited states are essentially described as charge-transfer excitations dominated by a single resonant valence bond structure and the calculated energy difference is comparable to the experimental optical gap. In the case of A12O3, the electronic spectra presents excitonic features and the local charge-transfer excitation excited states provide a reasonable representation of these phenomena. Finally, several different valence bond structures are present in the lowest electronic states of KNiF3. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
The electronic spectrum of cyclopropene has been studied using multiconfigurational second-order perturbation theory (CASPT2) with extended ANO-type basis sets. The calculation comprises two valence states and the 3s, 3p, 3d members of the Rydberg series converging to the π and σ ionization limits. A total of twenty singlet and twenty triplet excited states have been analyzed. The results confirm the valence nature of the lowest energy singlet-singlet band and yield a conclusive assignment: the first dipole-allowed transition in cyclcopropene is due to absorption to a (σ → π*) state. The (π → π*) (V) state is interleaved among a number of Rydberg states in the most intense band of the system. The remaining spectral bands are due to Rydberg transitions of higher energy. The two lowest singlet-triplet transitions involve the same valence states. The results are in agreement with available experimental data and provide a number of new assignments of the experimental spectra.  相似文献   

16.
During this contribution, we present a benchmark investigation on the applicability of several Minnesota functionals from various classes like local meta-generalized and meta-nonseparable gradient approximations, hybrids, and range-separated hybrids for describing the valence and Rydberg excitation energies of some organic compounds from different categories. Furthermore, the performances of Minnesota density functionals from density functional theory are also assessed against a wave function theory based approach in the context of excite states calculations, symmetry adapted cluster-configuration interaction (SAC-CI) method. Pragmatically, the singles and doubles linked excitation operators are considered in the SAC-CI wave functions. With more or less different accountabilities of the considered methods, it is shown that the M06-2X, M05-2X, and M11 functionals have the best performances for valence excited states. On the other hand, for Rydberg excited states although the SAC-CI method outperforms others, the statistical analyses reveal that the efficiency of some Minnesota functionals is also respectable.  相似文献   

17.
The electronic structure of azulene molecule has been studied. We have obtained the optimized structures of ground and singlet excited states by using the complete active space self-consistent-field (CASSCF) method, and calculated vertical and 0-0 transition energies between the ground and excited states with second-order M?ller-Plesset perturbation theory (CASPT2). The CASPT2 calculations indicate that the bond-equalized C(2v) structure is more stable than the bond-alternating C(s) structure in the ground state. For a physical understanding of electronic structure change from C(2v) to C(s), we have performed the CASSCF calculations of Duschinsky matrix describing mixing of the b(2) vibrational mode between the ground (1A(1)) and the first excited (1B(2)) states based on the Kekule-crossing model. The CASPT2 0-0 transition energies are in fairly good agreement with experimental results within 0.1-0.3 eV. The CASSCF oscillator strengths between the ground and excited states are calculated and compared with experimental data. Furthermore, we have calculated the CASPT2 dipole moments of ground and excited states, which show good agreement with experimental values.  相似文献   

18.
Quantum chemical calculations of geometric and electronic structure and vertical transition energies for several low-lying excited states of the neutral and negatively charged nitrogen-vacancy point defect in diamond (NV(0) and NV(-)) have been performed employing various theoretical methods and basis sets and using finite model NC(n)H(m) clusters. Unpaired electrons in the ground doublet state of NV(0) and triplet state of NV(-) are found to be localized mainly on three carbon atoms around the vacancy and the electronic density on the nitrogen and rest of C atoms is only weakly disturbed. The lowest excited states involve different electronic distributions on molecular orbitals localized close to the vacancy and their wave functions exhibit a strong multireference character with significant contributions from diffuse functions. CASSCF calculations underestimate excitation energies for the anionic defect and overestimate those for the neutral system. The inclusion of dynamic electronic correlation at the CASPT2 level leads to a reasonable agreement (within 0.25 eV) of the calculated transition energy to the lowest excited state with experiment for both systems. Several excited states for NV(-) are found in the energy range of 2-3 eV, but only for the 1(3)E and 5(3)E states the excitation probabilities from the ground state are significant, with the first absorption band calculated at approximately 1.9 eV and the second lying 0.8-1 eV higher in energy than the first one. For NV(0), we predict the following order of electronic states: 1(2)E (0.0), 1(2)A(2) (approximately 2.4 eV), 2(2)E (2.7-2.8 eV), 1(2)A(1), 3(2)E (approximately 3.2 eV and higher).  相似文献   

19.
Complete active space self-consistent field (CASSCF) and multireference CI with singles and doubles (MR-CISD) calculations [including extensivity corrections, at MR-CISD+Q and multireference averaged quadratic coupled cluster (MR-AQCC) levels] have been performed to characterize the low-lying valence and the Rydberg states of 2H-tetrazole. The highest level results (MR-AQCC/d'-aug'-cc-pVDZ) indicate the following ordering of the valence singlet excited states: S(1) (n-pi*), 6.06 eV; S(2) (n-pi*), 6.55 eV; S(3) (pi-pi*), 6.55 eV. The MR-CISD+Q/d'-aug'-cc-pVDZ results indicate the same ordering, but at slight higher energies: 6.16, 6.68, and 6.69 eV, respectively. According to our MR-CISD+Q/d'-aug'-cc-pVDZ results, the next two states are Rydberg states, at 7.69 eV (pi-3s) and 7.89 eV (n-3s). The calculated energies of these two states, as well as their proximity, are consistent with the conclusion reached by Palmer and Beveridge (Chem Phys 1987, 111, 249) that the first band of the photoelectron spectrum of 2H-tetrazole is likely to be associated to the first two ionizations processes (of pi and N lone pair electrons), at energies close to 11.3 eV.  相似文献   

20.
Time-dependent density functional (TD-DFT) and perturbation theory-based outer valence Green functions (OVGF) methods have been tested for calculations of excitation energies for a set of radicals, molecules, and model clusters simulating points defects in silica. The results show that the TD-DFT approach may give unreliable results not only for diffuse Rydberg states, but also for electronic states involving transitions between MOs localized in two remote from each other spatial regions, for example, for charge-transfer excitations. For the. O-SiX(3) clusters, where X is a single-valence group, TD-DFT predicts reasonable excitation energies but incorrect sequence of electronic transitions. For a number of cases where TD-DFT is shown to be unreliable, the OVGF approach can provide better estimates of excitation energies, but this method also is not expected to perform universally well. The OVGF performance is demonstrated to be satisfactory for excitations with predominantly single-determinant wave functions where the deviations of the calculated energies from experiment should not exceed 0.1-0.3 eV. However, for more complicated transitions involving multiple bonds or for excited states with multireference wave functions the OVGF approach is less reliable and error in the computed energies can reach 0.5-1 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号