首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Covalent functionalization of a ZnO nanocluster with thiophene molecule was studied by means of density functional theory calculations. The obtained results show that the molecule is physically adsorbed on the surface of nanocluster with adsorption energies in the range of ?0.33 to ?0.42 eV. In this study, 2η-C4H4S–Zn12O12 cluster is the most stable adsorption among all thiophene adsorption configurations. Accordingly, HOMO–LUMO energy gap of the nano-cluster is changed about 0.24 to 0.72 % using the DFT calculations. The values of charge transfer shows that π-back bonding exists for 2η and 5η bonding modes. Present results might be helpful to provide an effective way to modify the Zn12O12 properties for further applications such as generation of the new hybrid compounds.  相似文献   

2.
Special efforts were devoted to improve the absorption behavior of AR20 in visible region. Density functional theory (DFT)‐based approaches were applied to explore the electronic structure properties of AR20 and its derivatives. Time‐dependent DFT results indicate that the ancillary ligand controls the molecular orbital (MO) energy levels and masters the absorption transition nature. The deprotonation of anchoring ligand not only affects the frontier MO energy levels but also determines the energy gaps of highest occupied MO–lowest unoccupied MO (LUMO) and LUMO–LUMO+1. Introducing thiophene groups into ancillary ligands would enhance the efficiency of the final dye‐sensitized solar cell (DSSC). The absorption intensity of the thiophene substituted derivatives of AR20 is irrelevant with environment circumstance change, such as pH value. This special nature prognosticates the thiophene‐substituted derivatives of AR20 which would have a broad application in DSSC. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Density functional theory (DFT) calculations at ONIOM DFT B3LYP/ 6‐31G**‐MD/UFF level are employed to study molecular and dissociative water and ammonia adsorption on anatase TiO2 (001) surface represented by partially relaxed Ti20O35 ONIOM cluster. DFT calculations indicate that water molecule is dissociated on anatase TiO2 (001) surface by a nonactivated process with an exothermic relative energy difference of 58.12 kcal/mol. Dissociation of ammonia molecule on the same surface is energetically more favorable than molecular adsorption of ammonia (?37.17 kcal/mol vs. ?23.28 kcal/mol). The vibration frequency values also are computed for the optimized geometries of adsorbed water and ammonia molecules on anatase TiO2 (001) surface. The computed adsorption energy and vibration frequency values are comparable with the values reported in the literature. Finally, several thermodynamical properties (ΔH°, ΔS°, and ΔG°) are calculated for temperatures corresponding to the experimental studies. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

4.
Three structurally similar antipyrine derivatives of o-hydroxybenzylideneaminoantipyrine (o-HBAP), m-hydroxybenzylideneaminoantipyrine (m-HBAP) and p-hydroxybenzylideneaminoantipyrine (p-HBAP) were characterized by FT-IR, FT-Raman experimental techniques and density functional theoretical (DFT) calculations. The comparisons between the calculated and experimental results covering molecular structures, assignments of fundamental vibrational modes and thermodynamic properties were investigated. The optimized molecular geometries agree well with the corresponding experimental values by comparing with the XRD data. The comparisons and assignments of the vibrational frequencies indicate that the experimental spectra also coincide satisfactorily with those of theoretically simulated spectrograms except the hydrogen-bond coupling infrared vibrations, and compounds can be distinguished by the IR and Raman spectra due to the differences of the hydroxyl-substituted positions and molecular packing, and the strong Raman scattering activities of the compounds are tightly relative to the molecular conjugative moieties linked through the Schiff base imines. The thermodynamic functions and their correlations with temperatures were also obtained from the theoretical harmonic frequencies.  相似文献   

5.
Adsorption energies of molecular oxygen on Au clusters   总被引:1,自引:0,他引:1  
The adsorption properties of O(2) molecules on anionic, cationic, and neutral Au(n) clusters (n=1-6) are studied using the density functional theory (DFT) with the generalized gradient approximation (GGA), and with the hybrid functional. The results show that the GGA calculations with the PW91 functional systemically overestimate the adsorption energy by 0.2-0.4 eV than the DFT ones with the hybrid functional, resulting in the failure of GGA with the PW91 functional for predicting the adsorption behavior of molecular oxygen on Au clusters. Our DFT calculations with the hybrid functional give the same adsorption behavior of molecular oxygen on Au cluster anions and cations as the experimental measurements. For the neutral Au clusters, the hybrid DFT predicts that only Au(3) and Au(5) clusters can adsorb one O(2) molecule.  相似文献   

6.
Molecular structure and vibrational frequencies of the novel surface enolic species intermediate on Ag/Al2O3 have been investigated by means of density functional theory (DFT) calculations and in situ infrared spectroscopy. The geometrical structures and vibrational frequencies were obtained at the B3P86 levels of DFT and compared with the corresponding experimental values. Theoretical calculations show that the calculated IR spectra are in good agreement with the experimental spectroscopic results. In addition, the adsorption energy of enolic species on the Ag/Al2O3 catalyst surface was also evaluated. The reaction mechanism from C2H5OH to enolic species on Ag/Al2O3 catalyst was proposed.  相似文献   

7.
The adsorption of thiophene on Ge(100) has been studied using scanning tunneling microscopy (STM), high-resolution core-level photoemission spectroscopy (HRPES), and density functional theory (DFT) calculations. Until now, thiophene is known to react with the Ge(100) dimer through a [4 + 2] cycloaddition reaction at room temperature, similar to the case of thiophene on Si(100). However, we found that thiophene has two adsorption geometries on Ge(100) at room temperature, such as a kinetically favorable Ge-S dative bonding configuration and a thermodynamically stable [4 + 2] cycloaddition adduct. Moreover, our STM results show that under 0.25 ML thiophene molecules preferentially produce one-dimensional molecular chain structures on Ge(100) via the Ge-S dative bonding configuration.  相似文献   

8.
Adsorption plays a critical role in surface and interface processes. Fractional surface coverage and adsorption free energy are two essential parameters of molecular adsorption. However, although adsorption at the solid–gas interface has been well‐studied, and some adsorption models were proposed more than a century ago, challenges remain for the experimental investigation of molecular adsorption at the solid–liquid interface. Herein, we report the statistical and quantitative single‐molecule measurement of adsorption at the solid–liquid interface by using the single‐molecule break junction technique. The fractional surface coverage was extracted from the analysis of junction formation probability so that the adsorption free energy could be calculated by referring to the Langmuir isotherm. In the case of three prototypical molecules with terminal methylthio, pyridyl, and amino groups, the adsorption free energies were found to be 32.5, 33.9, and 28.3 kJ mol?1, respectively, which are consistent with DFT calculations.  相似文献   

9.
The interaction, at a low temperature, between molecular hydrogen and the zeolite Li-FER was studied by means of variable temperature infrared spectroscopy and theoretical calculations using a periodic DFT model. The adsorbed dihydrogen molecule becomes infrared active, giving a characteristic IR absorption band (H-H stretching) at 4090 cm(-1). Three different Li(+) site types with respect to H(2) adsorption were found in the zeolite, two of which adsorb H(2). Calculations showed a similar interaction energy for these two sites, which was found to agree with the experimentally determined value of standard adsorption enthalpy of DeltaH(0) = -4.1 (+/-0.8) kJ mol(-1). The results are discussed in the broader context of previously reported data for H(2) adsorption on Na-FER and K-FER.  相似文献   

10.
Density functional theory (DFT) calculations and an experimental vibrational characterization of papaverine hydrochloride were performed. The computed structural parameters agree very well with the experimental values of the related crystal structure. The pH dependent Raman and SERS spectra of papaverine hydrochloride were recorded and discussed with the assistance of our theoretical results (harmonical vibrational wavenumbers, Raman scattering activities, total electron density and Natural Population Analysis of the molecule) and the SERS surface selection rules. Two different adsorption geometries were found for the corresponding evidenced species of papaverine, protonated and neutral, respectively.  相似文献   

11.
Atomic charges can be derived from observed infrared intensities and molecular dipole moments. The atomic charges so drived for a series of simple organic molecules are compared with atomic electron population data computed by quantum-mechanical calculations at various levels. It is shown that experimental charges agree very well with those computed by 6-31G**.  相似文献   

12.
The density functional theory (DFT) with the B3P86 hybrid exchange-correlation functional was used to calculate the molecular and electronic structure of the Mo12S24 macromolecule as a single MoS2 layered structure slab. Calculations with geometry optimization are indicative of insignificant relaxation of the coordinatively unsaturated Mo and S atoms, which corresponds with the literature DFT data on the MoS2 single slab obtained with periodic boundary conditions. The calculated forbidden band width (0.85–0.98 eV) is comparable with its experimental value (1.30 eV) and the results of DFT calculations of MoS2 with periodic boundary conditions (0.89 eV). An analysis of the electronic state of the surface Mo centers in the Mo12S24 macromolecule showed that these centers were reduced to a greater degree than the Mo(IV) atoms in the bulk. The adsorption complex between the Mo12S24 macromolecule and six H2S molecules was calculated to characterize the adsorption ability of the coordinatively unsaturated Mo centers. The structure and energy characteristics of the adsorption complex corresponded to weak donor-acceptor interaction between the π lone pair of H2S and the surface (reduced) Mo centers. The suggestion was made that the active center of the catalytic cycle of thiophene hydrodesulfurization should induce the oxidative addition of H2 followed by the occlusion of hydrogen into the MoS2 matrix.  相似文献   

13.
Theoretical density functional theory (DFT) calculation, ab initio and experimental vibrational characterization of acridone were performed. The computed vibrational modes agree well with the experimental values of the related crystal structure. Surface enhanced Raman scattering (SERS) of acridone in silver colloids with different surface potential values was studied. FT-SERS spectrum of acridone revealed different adsorption behavior of the title compound on the silver particles.  相似文献   

14.
采用密度泛函理论(DFT),选取DMol3程序模块,对噻吩在M(111)(M=Pd,Pt,Au)表面上的吸附行为进行了探讨.通过对噻吩在不同底物金属上的吸附能、吸附构型、Mulliken电荷布居、差分电荷密度以及态密度的分析发现,噻吩在Pd(111)面上的吸附能最大,Pt(111)面次之,Au(111)面最小.吸附后,噻吩在Au(111)面上的构型几乎保持不变,最终通过S端倾斜吸附于top位;噻吩在Pd(111)及Pt(111)面上发生了折叠与变形,环中氢原子向上翘起,最终通过环平面平行吸附于hollow位.此外,噻吩环吸附后芳香性遭到了破坏,环中碳原子发生sp3杂化,同时电子逐渐由噻吩向M(111)面发生转移,M(111)面上的部分电子也反馈给了噻吩环中的空轨道,这种协同作用最终导致了噻吩分子稳定吸附于M(111)面.  相似文献   

15.
The adsorption and decomposition of water on Ge(100) have been investigated using real-time scanning tunneling microscopy (STM) and density-functional theory (DFT) calculations. The STM results revealed two distinct adsorption features of H2O on Ge(100) corresponding to molecular adsorption and H-OH dissociative adsorption. In the molecular adsorption geometry, H2O molecules are bound to the surface via Ge-O dative bonds between the O atom of H2O and the electrophilic down atom of the Ge dimer. In the dissociative adsorption geometry, the H2O molecule dissociates into H and OH, which bind covalently to a Ge-Ge dimer on Ge(100) in an H-Ge-Ge-OH configuration. The DFT calculations showed that the dissociative adsorption geometry is more stable than the molecular adsorption geometry. This finding is consistent with the STM results, which showed that the dissociative product becomes dominant as the H2O coverage is increased. The simulated STM images agreed very well with the experimental images. In the real-time STM experiments, we also observed a structural transformation of the H2O molecule from the molecular adsorption to the dissociative adsorption geometry.  相似文献   

16.
Density functional theory (DFT) calculations performed at ONIOM DFT B3LYP/6‐31G**‐MD/UFF level are employed to study molecular and dissociative water adsorption on rutile TiO2 (110) surface represented by partially relaxed Ti25O37 ONIOM cluster. DFT calculations indicate that dissociative water adsorption is not favorable because of high activation barrier (23.2 kcal/mol). The adsorption energy and vibration frequency of both molecularly and dissociatively adsorbed water molecule on rutile TiO2 (110) surface compare well with the values reported in the literature. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

17.
采用密度泛函理论(DFT), 选取DMol3程序模块, 对噻吩在M(111) (M=Pd, Pt, Au)表面上的吸附行为进行了探讨. 通过对噻吩在不同底物金属上的吸附能、吸附构型、Mulliken 电荷布居、差分电荷密度以及态密度的分析发现, 噻吩在Pd(111)面上的吸附能最大, Pt(111)面次之, Au(111)面最小. 吸附后, 噻吩在Au(111)面上的构型几乎保持不变, 最终通过S端倾斜吸附于top 位; 噻吩在Pd(111)及Pt(111)面上发生了折叠与变形, 环中氢原子向上翘起, 最终通过环平面平行吸附于hollow 位. 此外, 噻吩环吸附后芳香性遭到了破坏, 环中碳原子发生sp3杂化, 同时电子逐渐由噻吩向M(111)面发生转移, M(111)面上的部分电子也反馈给了噻吩环中的空轨道, 这种协同作用最终导致了噻吩分子稳定吸附于M(111)面.  相似文献   

18.
The adsorption of cationic Methylene Blue (MB) and anionic Procion Crimson H-EXL (PC) dyes from aqueous medium on pyrophyllite was studied. Changes in the electrokinetics of pyrophyllite as a function of pH were investigated in the absence and presence of multivalent cations. The results show that pyrophyllite in water exhibits a negative surface charge within the range pH 2-12. Pyrophyllite is found to be a novel adsorbent for versatile removal of cationic and anionic dyes. The negative hydrophilic surface sites of pyrophyllite are responsible for the adsorption of cationic MB molecules. The adsorption of anionic PC dye is possible after a charge reversal by the addition of trivalent cation of Al. Nearly 2 min of contact time are found to be sufficient for the adsorption of both dyes to reach equilibrium. The experimental data follow a Langmuir isotherm with adsorption capacities of 70.42 and 71.43 mg dye per gram of pyrophyllite for MB and PC, respectively. For the adsorption of both MB and PC dyes, the pseudo-second-order chemical reaction kinetics provides the best correlation of the experimental data.  相似文献   

19.
Atrazine, a pesticide belonging to the s‐triazine family, is one of the most employed pesticides. Due to its negative impact on the environment, it has been forbidden within the European Union since 2004 but remains abundant in soils. For these reasons, its behavior in soils and water at the atomic scale is of great interest. In this article, we have investigated, using DFT, the adsorption of atrazine onto two different clay surfaces: a pyrophyllite clay and an Mg‐substituted clay named montmorillonite, with Ca2+ compensating cations on its surface. The calculations show that the atrazine molecule is physisorbed on the pyrophyllite surface, evidencing the necessity to use dispersion‐corrected computational methods. The adsorption energies of atrazine on montmorillonite are two to three times larger than on pyrophyllite, depending on the adsorption pattern. The computed adsorption energy is of about −30 kcal mol−1 for the two most stable montmorillonite‐atrazine studied isomers. For these complexes, the large adsorption energy is related to the strong interaction between the chlorine atom of the atrazine molecule and one of the Ca2+ compensating cations of the clay surface. The structural modifications induced by the adsorption are localized: for the surface, close to substitutions and particularly below the Ca2+ cations; in the molecule, around the chlorine atom when Ca2+ interacts strongly with this basic site in a monodentate mode. This study shows the important role of the alkaline earth cations on the adsorption of atrazine on clays, suggesting that the atrazine pesticide retention will be significant in Ca2+‐montmorillonite clays. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
A systematic analysis was performed on the suitability of the molecular electrostatic potential (MEP) and MEP-derived properties determined by means of density functional (DFT) methods. Attention was paid to the electrostatic potential (ESP) derived charges, the ESP and exact quantum mechanical dipole moments, the depth of MEP minima, and the MEP distribution in layers around the molecule for a large series of molecules. The electrostatic properties were determined at either local or nonlocal DFT levels using different functionals. The results were compared with the values estimated from quantum mechanical calculations performed at Hartree–Fock, Møller–Plesset up to fourth order, and CIPSI levels. The suitability of the MEP-derived properties estimated from DFT methods is discussed for application in different areas of chemical interest. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 980–991, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号