首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let R and S be rings and S C R a semidualizing bimodule. We investigate the relative Tor functors \(\text {Tor}_{i}^{\mathcal {M}\mathcal {L}_{C}}(-,-)\) defined via C-level resolutions, and these functors are exactly the relative Tor functors \(\text {Tor}_{i}^{\mathcal {M}\mathcal {F}_{C}}(-,-)\) defined by Salimi, Sather-Wagstaff, Tavasoli and Yassemi provided that S = R is a commutative Noetherian ring. Vanishing of these functors characterizes the finiteness of \(\mathcal {L}_{C}(S)\)-projective dimension. Applications go in two directions. The first is to characterize when every S-module has a monic (or epic) C-level precover (or preenvelope). The second is to give some criteria for the isomorphism \(\text {Tor}_{i}^{\mathcal {M}\mathcal {L}_{C}}(-,-)\cong \text {Tor}_{i}^{\mathcal {M}\mathcal {F}_{C}}(-,-)\) between the bifunctors.  相似文献   

2.
In an atomic, cancellative, commutative monoid S, the elasticity of an element provides a coarse measure of its non-unique factorizations by comparing the largest and smallest values in its set of factorization lengths (called its length set). In this paper, we show that the set of length sets \({\mathcal {L}}(S)\) for any arithmetical numerical monoid S can be completely recovered from its set of elasticities R(S); therefore, R(S) is as strong a factorization invariant as \({\mathcal {L}}(S)\) in this setting. For general numerical monoids, we describe the set of elasticities as a specific collection of monotone increasing sequences with a common limit point of \(\max R(S)\).  相似文献   

3.
Let \({\mathfrak {P}}(S)\) be the space of convex projective structures on a surface S with negative Euler characteristic. Goldman and Bonahon-Dreyer constructed two different sets of global coordinates for \({\mathfrak {P}}(S)\), both associated to a pair of pants decomposition of the surface S. The article explicitly describes the coordinate change between these two parametrizations. Most of the arguments are concentrated in the case where S is a pair of pants, in which case the Bonahon-Dreyer coordinates are actually due to Fock-Goncharov.  相似文献   

4.
Fix (not necessarily distinct) objects i and j of a locally small category S, and write \(S_{ij}\) for the set of all morphisms \(i\rightarrow j\). Fix a morphism \(a\in S_{ji}\), and define an operation \(\star _a\) on \(S_{ij}\) by \(x\star _ay=xay\) for all \(x,y\in S_{ij}\). Then \((S_{ij},\star _a)\) is a semigroup, known as a sandwich semigroup, and denoted by \(S_{ij}^a\). This article develops a general theory of sandwich semigroups in locally small categories. We begin with structural issues such as regularity, Green’s relations and stability, focusing on the relationships between these properties on \(S_{ij}^a\) and the whole category S. We then identify a natural condition on a, called sandwich regularity, under which the set \({\text {Reg}}(S_{ij}^a)\) of all regular elements of \(S_{ij}^a\) is a subsemigroup of \(S_{ij}^a\). Under this condition, we carefully analyse the structure of the semigroup \({\text {Reg}}(S_{ij}^a)\), relating it via pullback products to certain regular subsemigroups of \(S_{ii}\) and \(S_{jj}\), and to a certain regular sandwich monoid defined on a subset of \(S_{ji}\); among other things, this allows us to also describe the idempotent-generated subsemigroup \(\mathbb E(S_{ij}^a)\) of \(S_{ij}^a\). We also study combinatorial invariants such as the rank (minimal size of a generating set) of the semigroups \(S_{ij}^a\), \({\text {Reg}}(S_{ij}^a)\) and \(\mathbb E(S_{ij}^a)\); we give lower bounds for these ranks, and in the case of \({\text {Reg}}(S_{ij}^a)\) and \(\mathbb E(S_{ij}^a)\) show that the bounds are sharp under a certain condition we call MI-domination. Applications to concrete categories of transformations and partial transformations are given in Part II.  相似文献   

5.
Let X be a Hausdorff topological space, and let \({\mathscr {B}}_1(X)\) denote the space of all real Baire-one functions defined on X. Let A be a nonempty subset of X endowed with the topology induced from X, and let \({\mathscr {F}}(A)\) be the set of functions \(A\rightarrow {\mathbb R}\) with a property \({\mathscr {F}}\) making \({\mathscr {F}}(A)\) a linear subspace of \({\mathscr {B}}_1(A)\). We give a sufficient condition for the existence of a linear extension operator \(T_A:{\mathscr {F}}(A)\rightarrow {\mathscr {F}}(X)\), where \({\mathscr {F}}\) means to be piecewise continuous on a sequence of closed and \(G_\delta \) subsets of X and is denoted by \({\mathscr {P}_0}\). We show that \(T_A\) restricted to bounded elements of \({\mathscr {F}}(A)\) endowed with the supremum norm is an isometry. As a consequence of our main theorem, we formulate the conclusion about existence of a linear extension operator for the classes of Baire-one-star and piecewise continuous functions.  相似文献   

6.
Let G be a finite group acting linearly on a vector space V. We consider the linear symmetry groups \({\text {GL}}(Gv)\) of orbits \(Gv\subseteq V\), where the linear symmetry group \({\text {GL}}(S)\) of a subset \(S\subseteq V\) is defined as the set of all linear maps of the linear span of S which permute S. We assume that V is the linear span of at least one orbit Gv. We define a set of generic points in V, which is Zariski open in V, and show that the groups \({\text {GL}}(Gv)\) for v generic are all isomorphic, and isomorphic to a subgroup of every symmetry group \({\text {GL}}(Gw)\) such that V is the linear span of Gw. If the underlying characteristic is zero, “isomorphic” can be replaced by “conjugate in \({\text {GL}}(V)\).” Moreover, in the characteristic zero case, we show how the character of G on V determines this generic symmetry group. We apply our theory to classify all affine symmetry groups of vertex-transitive polytopes, thereby answering a question of Babai (Geom Dedicata 6(3):331–337, 1977.  https://doi.org/10.1007/BF02429904).  相似文献   

7.
For a compact surface S, let \({\mathcal {I}}(S)\) denote the Torelli group of S. For a compact orientable surface \(\Sigma \), \({\mathcal {I}}(\Sigma )\) is generated by two types of mapping classes, called bounding simple closed curve maps (BSCC maps) and bounding pair maps (BP maps) (see Powell in Proc Am Math Soc 68:347–350, 1978; Putman in Geom Topol 11:829–865, 2007). For a non-orientable closed surface N, \({\mathcal {I}}(N)\) is generated by BSCC maps and BP maps (see Hirose and Kobayashi in Fund Math 238:29–51, 2017). In this paper, we give an explicit normal generating set for \({\mathcal {I}}(N_g^b)\), where \(N_g^b\) is a genus-g compact non-orientable surface with b boundary components for \(g\ge 4\) and \(b\ge 1\).  相似文献   

8.
Let G be a reductive p-adic group. Let \(\Phi \) be an invariant distribution on G lying in the Bernstein center \({\mathcal {Z}}(G)\). We prove that \(\Phi \) is supported on compact elements in G if and only if it defines a constant function on every component of the set \({\text {Irr}}(G)\); in particular, we show that the space of all elements of \({\mathcal {Z}}(G)\) supported on compact elements is a subalgebra of \({\mathcal {Z}}(G)\). Our proof is a slight modification of the argument from Section 2 of Dat (J Reine Angew Math 554:69–103, 2003), where our result is proved in one direction.  相似文献   

9.
A. Golbaharan 《Positivity》2018,22(5):1265-1268
We prove that if X is a compact metric space and \({\text {lip}}(X,d)\) has the uniform separation property, then weakly compact weighted composition operators on spaces of Lipschitz functions \({\text {Lip}}(X,d)\) and \({\text {lip}}(X,d)\) are compact.  相似文献   

10.
Here we present an alternative proof using Bures distance that the generator L of a norm continuous completely positive semigroup acting on a \(C^*\)-algebra \({\mathcal {B}}\subset \mathcal B(H)\) has the form \( L(b) = \Psi (b) + k^*b+bk\), \(b\in {\mathcal {B}}\) for some completely positive map \(\Psi :{\mathcal {B}}\rightarrow {\mathcal {B}}(H)\) and \(k\in {\mathcal {B}}(H)\).  相似文献   

11.
Let M be a connected generic real-analytic CR-submanifold of a finite-dimensional complex vector space E. Suppose that for every aM the Lie algebra \({\frak{hol}}(M,a)\) of germs of all infinitesimal real-analytic CR-automorphisms of M at a is finite-dimensional and its complexification contains all constant vector fields \(\alpha\frac {\partial}{\partial z} \), αE, and the Euler vector field \(z\frac{\partial}{\partial z} \). Under these assumptions we show that: (I) every \({\frak{hol}}(M,a)\) consists of polynomial vector fields, hence coincides with the Lie algebra \({\frak{hol}}(M)\) of all infinitesimal real-analytic CR-automorphisms of M, (II) every local real-analytic CR-automorphism of M extends to a birational transformation of E, and (III) the group Bir?(M) generated by such birational transformations is realized as a group of projective transformations upon embedding E as a Zariski open subset into a projective algebraic variety. Under additional assumptions the group Bir?(M) is shown to have the structure of a Lie group with at most countably many connected components and Lie algebra \({\frak{hol}}(M)\). All of the above results apply, for instance, to Levi non-degenerate quadrics, as well as a large number of Levi degenerate tube manifolds.  相似文献   

12.
If S is a semigroup, the global (or the power semigroup) of S is the set \(\mathcal {P}(S)\) of all nonempty subsets of S equipped with the naturally defined multiplication. A class \(\mathcal {K}\) of semigroups is globally determined if any two semigroups of \({\mathcal {K}}\) with isomorphic globals are themselves isomorphic. We study properties of globals of normal orthogroups and show, in particular, that the class of normal orthogroups is globally determined.  相似文献   

13.
Let G be a finite simple graph and I(G) denote the corresponding edge ideal. For all \(s \ge 1\), we obtain upper bounds for \({\text {reg}}(I(G)^s)\) for bipartite graphs. We then compare the properties of G and \(G'\), where \(G'\) is the graph associated with the polarization of the ideal \((I(G)^{s+1} : e_1\cdots e_s)\), where \(e_1,\cdots , e_s\) are edges of G. Using these results, we explicitly compute \({\text {reg}}(I(G)^s)\) for several subclasses of bipartite graphs.  相似文献   

14.
Denote by \(C_m\) the cyclic group of order m. Let \({\mathcal {R}}(C_m)\) be its real representation ring, and \(\Delta (C_m)\) its augmentation ideal. In this paper, we give an explicit \({\mathbb {Z}}\)-basis for the n-th power \(\Delta ^{n}(C_m)\) and determine the isomorphism class of the n-th augmentation quotient \(\Delta ^n(C_m)/\Delta ^{n+1}(C_m)\) for each positive integer n.  相似文献   

15.
Let \(G=G(k)\) be a connected reductive group over a p-adic field k. The smooth (and tempered) complex representations of G can be considered as the nondegenerate modules over the Hecke algebra \({\mathcal {H}}={\mathcal {H}}(G)\) and the Schwartz algebra \({\mathcal {S}}={\mathcal {S}}(G)\) forming abelian categories \({\mathcal {M}}(G)\) and \({\mathcal {M}}^t(G)\), respectively. Idempotents \(e\in {\mathcal {H}}\) or \({\mathcal {S}}\) define full subcategories \({\mathcal {M}}_e(G)= \{V : {\mathcal {H}}eV=V\}\) and \({\mathcal {M}}_e^t(G)= \{V : {\mathcal {S}}eV=V\}\). Such an e is said to be special (in \({\mathcal {H}}\) or \({\mathcal {S}}\)) if the corresponding subcategory is abelian. Parallel to Bernstein’s result for \(e\in {\mathcal {H}}\) we will prove that, for special \(e \in {\mathcal {S}}\), \({\mathcal {M}}_e^t(G) = \prod _{\Theta \in \theta _e} {\mathcal {M}}^t(\Theta )\) is a finite direct product of component categories \({\mathcal {M}}^t(\Theta )\), now referring to connected components of the center of \({\mathcal {S}}\). A special \(e\in {\mathcal {H}}\) will be also special in \({\mathcal {S}}\), but idempotents \(e\in {\mathcal {H}}\) not being special can become special in \({\mathcal {S}}\). To obtain conditions we consider the sets \(\mathrm{Irr}^t(G) \subset \mathrm{Irr}(G)\) of (tempered) smooth irreducible representations of G, and we view \(\mathrm{Irr}(G)\) as a topological space for the Jacobson topology defined by the algebra \({\mathcal {H}}\). We use this topology to introduce a preorder on the connected components of \(\mathrm{Irr}^t(G)\). Then we prove that, for an idempotent \(e \in {\mathcal {H}}\) which becomes special in \({\mathcal {S}}\), its support \(\theta _e\) must be saturated with respect to that preorder. We further analyze the above decomposition of \({\mathcal {M}}_e^t(G)\) in the case where G is k-split with connected center and where \(e = e_J \in {\mathcal {H}}\) is the Iwahori idempotent. Here we can use work of Kazhdan and Lusztig to relate our preorder on the support \(\theta _{e_J}\) to the reverse of the natural partial order on the unipotent classes in G. We finish by explicitly computing the case \(G=GL_n\), where \(\theta _{e_J}\) identifies with the set of partitions of n. Surprisingly our preorder (which is a partial order now) is strictly coarser than the reverse of the dominance order on partitions.  相似文献   

16.
Let \((R, \mathfrak {m})\) be a local ring and M a finitely generated R-module. It is shown that if M is relative Cohen–Macaulay with respect to an ideal \(\mathfrak {a}\) of R, then \({\text {Ann}}_R(H_{\mathfrak {a}}^{{\text {cd}}(\mathfrak {a}, M)}(M))={\text {Ann}}_RM/L={\text {Ann}}_RM\) and \({\text {Ass}}_R (R/{\text {Ann}}_RM)\subseteq \{\mathfrak {p}\in {\text {Ass}}_R M|\,\mathrm{cd}(\mathfrak {a}, R/\mathfrak {p})={\text {cd}}(\mathfrak {a}, M)\},\) where L is the largest submodule of M such that \(\mathrm{cd}(\mathfrak {a}, L)< \mathrm{cd}(\mathfrak {a}, M)\). We also show that if \(H^{\dim M}_{\mathfrak {a}}(M)=0\), then \({\text {Att}}_R(H^{\dim M-1}_{\mathfrak {a}}(M))= \{\mathfrak {p}\in {\text {Supp}}(M)|\mathrm{cd}(\mathfrak {a}, R/\mathfrak {p})=\dim M-1\},\) and so the attached primes of \(H^{\dim M-1}_{\mathfrak {a}}(M)\) depend only on \({\text {Supp}}(M)\). Finally, we prove that if M is an arbitrary module (not necessarily finitely generated) over a Noetherian ring R with \(\mathrm{cd}(\mathfrak {a}, M)=\mathrm{cd}(\mathfrak {a}, R/{\text {Ann}}_RM)\), then \({\text {Att}}_R(H^{\mathrm{cd}(\mathfrak {a}, M)}_{\mathfrak {a}}(M))\subseteq \{\mathfrak {p}\in {\text {V}}({\text {Ann}}_RM)|\,\mathrm{cd}(\mathfrak {a}, R/\mathfrak {p})=\mathrm{cd}(\mathfrak {a}, M)\}.\) As a consequence of this, it is shown that if \(\dim M=\dim R\), then \({\text {Att}}_R(H^{\dim M}_{\mathfrak {a}}(M))\subseteq \{\mathfrak {p}\in {\text {Ass}}_R M|\mathrm{cd}(\mathfrak {a}, R/\mathfrak {p})=\dim M\}\).  相似文献   

17.
Let \({\mathcal {LM}}\left( {\mathcal {A}}, P\right) \) be an \(\ell ^1\)-Munn algebra over an arbitrary unital Banach algebra \({\mathcal {A}}\). We characterize homomorphisms from \({\mathcal {LM}}\left( {\mathcal {A}}, P\right) \) into an arbitrary Banach algebra \({\mathcal {B}}\) in terms of homomorphisms from \({\mathcal {A}}\) into \({\mathcal {B}}\). Then we discuss homomorphisms from arbitrary Banach algebras into \({\mathcal {LM}}\left( {\mathcal {A}}, P\right) \). Existence and uniqueness of homomorphisms under certain conditions are also discussed. We apply these results to the concrete case of \(\ell ^1(S)\) where S is a Rees matrix semigroup, to identify characters of \(\ell ^1(S)\) in both cases where S is with or without zero. As a consequence if the sandwich matrix of S has a zero entry, then \(\ell ^1(S)\) is character amenable.  相似文献   

18.
We study the collection of finite elements \(\Phi _{1}\big ({\mathcal {U}}(E,F)\big )\) in the vector lattice \({\mathcal {U}}(E,F)\) of orthogonally additive, order bounded (called abstract Uryson) operators between two vector lattices E and F, where F is Dedekind complete. In particular, for an atomic vector lattice E it is proved that for a finite element in \(\varphi \in {\mathcal {U}}(E,{\mathbb {R}})\) there is only a finite set of mutually disjoint atoms, where \(\varphi \) does not vanish and, for an atomless vector lattice the zero-vector is the only finite element in the band of \(\sigma \)-laterally continuous abstract Uryson functionals. We also describe the ideal \(\Phi _{1}\big ({\mathcal {U}}({\mathbb {R}}^n,{\mathbb {R}}^m)\big )\) for \(n,m\in {\mathbb {N}}\) and consider rank one operators to be finite elements in \({\mathcal {U}}(E,F)\).  相似文献   

19.
In this paper, we first characterize pseudo-amenability of semigroup algebras \(\ell ^1(S),\) for a certain class of commutative semigroups S,  the so-called archimedean semigroups. We show that for an archimedean semigroup S,  pseudo-amenability, amenability and approximate amenability of \(\ell ^1(S)\) are equivalent. Then for a commutative semigroup S,  we show that pseudo-amenability of \(\ell ^{1}(S)\) implies that S is a Clifford semigroup. Finally, we give some results on pseudo-amenability and approximate amenability of the second dual of a certain class of commutative semigroup algebras \(\ell ^1(S)\).  相似文献   

20.
Let X be an algebraic curve over \({\mathbb {Q}}\) and \({t\in {\mathbb {Q}}(X)}\) a non-constant rational function such that \({{\mathbb {Q}}(X)\ne {\mathbb {Q}}(t)}\). For every \({ n \in {\mathbb {Z}}}\) pick \({P_ n \in X(\bar{{\mathbb {Q}}})}\) such that \({t(P_n)=n}\). We conjecture that, for large N, among the number fields \({\mathbb {Q}}(P_1), \ldots , {\mathbb {Q}}(P_N)\) there are at least cN distinct. We prove this conjecture in the special case when \(\bar{{\mathbb {Q}}}(X)/\bar{{\mathbb {Q}}}(t)\) is an abelian field extension and the critical values of t are all rational. This implies, in particular, that our conjecture follows from a more famous conjecture of Schinzel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号