首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To investigate new architectures for the self-assembly of multiporphyrin arrays, a one-flask synthesis of a shape-persistent cyclic hexameric array of porphyrins was exploited to prepare six derivatives bearing diverse pendant groups. The new arrays contain 6-12 carboxylic acid groups, 12 amidino groups, 6 thiol groups, or 6 thiol groups and 6 carboxylic acid groups in protected form (S-acetylthio, TMS-ethyl, TMS-ethoxycarbonyl). The arrays contain alternating Zn and free base (Fb) porphyrins or all Zn porphyrins. The one-flask synthesis entails a template-directed, Pd-mediated coupling of a p/p'-substituted diethynyl Zn porphyrin and a m/m'-substituted diiodo Fb porphyrin. The porphyrin building blocks (trans-A(2)B(2), trans-AB(2)C) contain the protected pendant groups at nonlinking meso positions. A self-assembled monolayer (SAM) of a Zn(3)Fb(3) cyclic hexamer containing one thiol group on each porphyrin was prepared on a gold electrode and the surface-immobilized architecture was examined electrochemically. Together, the work reported herein provides cyclic hexameric porphyrin arrays for studies of self-assembly in solution or on surfaces.  相似文献   

2.
A modular building-block approach has been developed for the construction of linear amphipathic porphyrin arrays. The reaction of meso-(trifluoromethyl)dipyrromethane and an aldehyde under the conditions of the two-step room temperature porphyrin synthesis affords the trans-substituted porphyrin (13-56% yields). A similar reaction with two different aldehydes provides access to porphyrins bearing two different functional groups. An ethyne porphyrin and an iodo porphyrin (either free base or zinc) are selectively joined via Pd(0)-catalyzed coupling reactions, affording a linear array with porphyrins in defined metalation states. Coupling of a zinc-porphyrin bearing iodo and ester groups with a free base porphyrin bearing ethyne and ester groups yielded the zinc-free base porphyrin dimer. Coupling of a bis-ethyne porphyrin with a porphyrin bearing iodo and ester groups afforded the porphyrin trimer. Cleavage of the esters yielded the amphipathic porphyrin dimer and trimer arrays. The arrays with adjacent zinc and free base porphyrins undergo efficient electronic energy transfer. Both amphipathic porphyrin arrays have been incorporated into L-alpha-phosphatidylcholine vesicles. This versatile synthetic strategy provides access to a family of porphyrin arrays for studies of photophysical processes in supramolecular assemblies.  相似文献   

3.
Static and time-resolved optical measurements are reported for three cyclic hexameric porphyrin arrays and their self-assembled complexes with guest chromophores. The hexameric hosts contain zinc porphyrins and 0, 1, or 2 free base (Fb) porphyrins (denoted Zn(6), Zn(5)Fb, or Zn(4)Fb(2), respectively). The guest is a core-modified (O replacing one of the four N atoms) dipyridyl-substituted Fb porphyrin (DPFbO) that coordinates to zinc porphyrins of a host via pyridyl-zinc dative bonding. Each architecture is designed to have a gradient of excited-state energies for excitation funneling among the weakly coupled constituents of the host to the guest. Energy transfer to the lowest-energy chromophore(s) (coordinated zinc porphyrins or Fb porphyrins) within a hexameric host occurs primarily via a through-bond (TB) mechanism, is rapid ( approximately 40 ps), and is essentially quantitative (>or=98%). Energy transfer from a pyridyl-coordinated zinc porphyrin of the host to the guest in the Zn(6)*DPFbO complex has a yield of approximately 75%, a rate constant of approximately (0.7 ns)(-1), and significant F?rster through-space (TS) character. In the case of Zn(5)Fb*DPFbO, which has an additional TS route via the Fb porphyrin with a rate constant of approximately (20 ns)(-1), the yield of energy transfer to the guest is somewhat lower ( approximately 50%) than that for Zn(6)*DPFbO. Complex Zn(4)Fb(2)*DPFbO has an identical TS pathway via the Fb porphyrin plus an additional TS pathway involving the second Fb porphyrin (closer to the guest) with a rate constant of approximately (0.5 ns)(-1). This complex exhibits an energy-transfer yield to the guest that is significantly enhanced over that for Zn(5)Fb*DPFbO and comparable to that for Zn(6)*DPFbO. Collectively, the results for the various arrays suggest designs for similar host-guest complexes that are expected to exhibit much more efficient light harvesting and excitation trapping at the central guest chromophore.  相似文献   

4.
Static and time-resolved optical measurements are reported for two cyclic hexameric porphyrin arrays and their self-assembled complexes with guest chromophores. The hexameric hosts contain zinc porphyrins and 0 or 3 free base (Fb) porphyrins (denoted Zn(6) or Zn(3)Fb(3), respectively). The guests are a tripyridyl arene (TP) and a dipyridyl-substituted free base porphyrin (DPFb), each of which coordinates to zinc porphyrins of a host via pyridyl-zinc dative bonding. Each architecture is designed to have an overall gradient of excited-state energies that affords excitation funneling within the host and ultimately to the guest. Collectively, the studies delineate the various pathways, mechanisms, and rate constants of energy flow among the weakly coupled constituents of the host-guest complexes. The pathways include downhill unidirectional energy transfer between adjacent chromophores, bidirectional energy migration between identical chromophores, and energy transfer between nonadjacent chromophores. The energy transfer to the lowest-energy chromophore(s) within the backbone of a hexameric host (Fb porphyrins in Zn(3)Fb(3) or pyridyl-coordinated zinc porphyrins in Zn(6)*TP and Zn(6)*DPFb) proceeds primarily via a through-bond mechanism; the transfer is rapid (approximately 40 ps depending on the array) and essentially quantitative (>or=98%). The energy transfer from a pyridyl-coordinated zinc porphyrin of the host to the Fb porphyrin guest in the Zn(6)*DPFb complex is almost exclusively F?rster through-space in nature; this process is much slower ( approximately 1 ns) and has a lower yield (65%). These studies highlight the utility of cyclic architectures for efficient light harvesting and energy transfer to a designated trapping site.  相似文献   

5.
Femtosecond fluorescence anisotropy measurements for a variety of cyclic porphyrin arrays such as Zn(II)porphyrin m-trimer and hexamer are reported along with o-dimer and monomer as reference molecules. In the porphyrin arrays, a pair of porphyrin moieties are joined together via triphenyl linkage to ensure cyclic and rigid structures. Anisotropy decay times of the porphyrin arrays can be well described by the F?rster incoherent excitation hopping process between the porphyrin units. Exciton coupling strengths of 74 and 264 cm(-1) for the m-trimer and hexamer estimated from the observed excitation energy hopping rates are close to those of B800 and B850, respectively, in the LH2 bacterial light-harvesting antenna. Thus, these cyclic porphyrin array systems have proven to be useful in understanding energy migration processes in a relatively weak interaction regime in light of the similarity in overall structures and constituent chromophores to natural light-harvesting arrays.  相似文献   

6.
The Pd-mediated Glaser coupling of a zinc monoethynyl porphyrin and a magnesium monoethynyl porphyrin affords a mixture of three 4,4'-diphenylbutadiyne-linked dyads comprised of two zinc porphyrins (Zn-pbp-Zn), two magnesium porphyrins (Mg-pbp-Mg), and one metalloporphyrin of each type (Zn-pbp-Mg). The latter is easily isolated due to the greater polarity of the magnesium versus the zinc chelate. Exposure of Zn-pbp-Mg to silica gel results in selective demetalation, affording Zn-pbp-Fb where Fb = free base porphyrin. This synthesis route employs the magnesium porphyrin as a latent form of the Fb porphyrin, thereby avoiding copper insertion during the Glaser reaction, and as a polar entity facilitating separation. The absorption spectrum of Zn-pbp-Mg or Zn-pbp-Fb is the sum of the spectra of the component parts, while in each case the fluorescence spectrum upon illumination of the Zn porphyrin is dominated by emission from the Mg or Fb porphyrin. Time-resolved absorption spectroscopy shows that the energy-transfer rate constants are (11 ps)(-1) and (37 ps)(-1) for Zn-pbp-Mg and Zn-pbp-Fb, respectively, corresponding to energy-transfer quantum yields of 0.995 and 0.983, respectively. The calculated F?rster through-space rates are (1900 ps)(-1) and (1100 ps)(-1) for Zn-pbp-Mg and Zn-pbp-Fb, respectively. Accordingly, the through-bond process dominates for both dyads with a through-bond:through-space energy-transfer ratio of > or =97:1. Collectively, the studies show that the 4,4'-diphenylbutadiynyl linker supports fast and efficient energy transfer between Zn and Mg or Fb porphyrins.  相似文献   

7.
We present the rational design and synthesis of multiporphyrin arrays containing thiol-derivatized linkers for the purpose of multibit molecular information storage. Porphyrin dimers and trimers were synthesized by the Pd-mediated coupling of iodo-substituted and ethynyl-substituted porphyrin building blocks in 5-51% yields. Each porphyrin dimer bears one S-acetylthio group. The architecture of the trimers incorporates a trans-substituted porphyrin (central) bearing two S-acetylthio groups and two diphenylethyne-linked porphyrins (wings) in a trans geometry. The central porphyrin and the wing porphyrins bear distinct substituents and central metals, thereby affording different oxidation potentials. The S-acetylthio groups provide a means for attachment of the arrays to an electroactive surface. The dimers are designed for vertical orientation on an electroactive surface while the trimers are designed for horizontal orientation of the central porphyrin. Altogether seven different arrays were synthesized. Each array forms a self-assembled monolayer (SAM) on gold via in situ cleavage of the S-acetyl protecting group. The SAM of each array is electrochemically robust and exhibits multiple, reversible oxidation waves. In general, however, the trimeric arrays appear to form more highly ordered monolayers that exhibit sharper, better-defined redox features.  相似文献   

8.
A new strategy is described and implemented for determining the rates of hole‐transfer between equivalent porphyrins in multiporphyrin architectures. The approach allows access to these rates between sites that are not the most easily oxidized components of the array. The specific architectures investigated with this new strategy are triads consisting of one zinc porphyrin (Zn) and two free base porphyrins (Fb). The triads employ a diphenylethyne linker ( ZnFbFbU ) and a phenylene linker ( ZnFbFbΦ ). The zinc porphyrin is selectively oxidized to produce Zn + FbFb, the free base porphyrins are excited to produce the excited‐state mixture Zn + Fb*Fb and Zn + FbFb*, and the subsequent dynamics are monitored by ultrafast absorption spectroscopy. The system evolves by a combination of energy‐ and hole‐transfer processes involving (adjacent and nonadjacent) zinc and free base porphyrin constituents that are complete within 100 ps of excitation; the rate constants of many of these processes are derived from prior studies of the oxidized forms of the benchmark dyads ( ZnFbU and ZnFbΦ ). One of the excited‐state decay channels produces the metastable state ZnFbFb + that decays to a second metastable state ZnFb + Fb by the target hole‐transfer process, followed by rapid hole transfer to produce the Zn + FbFb thermodynamic ground state of the system. The rate constant for hole transfer between the free base porphyrins in the oxidized ZnFbFb triads is found to be (0.5 ns)?1 and (0.6 ns)?1 across phenylene and diphenylethyne linkers, respectively. These rate constants are comparable to those recently measured, using a related but distinct strategy, for ground‐state hole transfer between zinc porphyrins in oxidized ZnZnFb triads. The two complementary strategies provide unique approaches for probing hole transfer between equivalent sites in multiporphyrin arrays, with the choice of method being guided by the particular target process and the ease of synthesis of the necessary architectures.  相似文献   

9.
Kin-ya Tomizaki 《Tetrahedron》2004,60(9):2011-2023
Four new porphyrin dyads have been prepared for studies in artificial photosynthesis. The two porphyrins are joined at the meso positions via a phenylethyne linker and are present in zinc/zinc or zinc/free base metalation states. The porphyrin bearing the ethynyl unit incorporates zero, one, or two pentafluorophenyl groups at non-linking meso positions for tuning the porphyrin redox potentials. The synthetic approach entailed Pd-mediated coupling of porphyrin building blocks that bear a single ethynylphenyl or bromo/iodo substituent.  相似文献   

10.
The molecular design of directly meso-meso-linked porphyrin arrays as a new model of light-harvesting antenna as well as a molecular photonic wire was envisaged to bring the porphyrin units closer for rapid energy transfer. For this purpose, zinc(II) 5,15-bis(3,5-bis(octyloxy)phenyl)porphyrin (Z1) and its directly meso-meso-linked porphyrin arrays up to Z128 (Zn, n represents the number of porphyrins) were synthesized. The absorption spectra of these porphyrin arrays change in a systematic manner with an increase in the number of porphyrins; the high-energy Soret bands remain at nearly the same wavelength (413-414 nm), while the low-energy exciton split Soret bands are gradually red-shifted, resulting in a progressive increase in the exciton splitting energy. The exciton splitting is nicely correlated with the values of cos[pi/(N + 1)] according to Kasha's exciton coupling theory, providing a value of 4250 cm(-1) for the exciton coupling energy in the S(2) state. The increasing red-shifts for the Q-bands are rather modest. The fluorescence excitation anisotropy spectra of the porphyrin arrays show that the photoexcitation of the high-energy Soret bands exhibits a large angle difference between absorption and emission dipoles in contrast with the photoexcitation of the low-energy exciton split Soret and Q-bands. This result indicates that the high-energy Soret bands are characteristic of the summation of the individual monomeric transitions with its overall dipole moment deviated from the array chain direction, while the low-energy Soret bands result from the exciton splitting between the monomeric transition dipoles in line with the array chain direction. From the fluorescence quantum yields and fluorescence lifetime measurements, the radiative coherent length was estimated to be 6-8 porphyrin units in the porphyrin arrays. Ultrafast fluorescence decay measurements show that the S(2) --> S(1) internal conversion process occurs in less than 1 ps in the porphyrin arrays due to the existence of exciton split band as a ladder-type deactivation channel, while this process is relatively slow in Z1 (approximately 1.6 ps). The rate of this process seems to follow the energy gap law, which is mainly determined by the energy gap between the two Soret bands of the porphyrin arrays.  相似文献   

11.
The Ag(I)-promoted oxidative meso-meso coupling reaction of 5,15-diaryl Zn(II)-porphyrin was serendipitously found in the course of our synthetic approaches towards photosynthetic reaction centers. Based on this reaction, a variety of directly linked and fused porphyrin arrays have been synthesized, including linear meso-meso-linked porphyrin arrays, windmill- and grid-shaped porphyrin arrays, meso-beta singly linked diporphyrins, beta-beta linked diporphyrins, meso-beta doubly linked (fused) diporphyrins and oligoporphyrins, meso-meso beta-beta doubly linked (fused) diporphyrins, and meso-meso beta-beta-beta-beta triply linked (fused) diporphyrins. The meso-meso coupling reaction of 5,15-diaryl Zn(II)-porphyrins is advantageous considering its high regioselectivity as well as its ease of extension to large porphyrin arrays as is demonstrated by the synthesis of a discrete meso-meso-linked 128-mer and poly(5,15-porphyrinylene). Finally, the oxidation of end-phenyl capped meso-meso-linked zinc porphyrins with DDQ-Sc(OTf)(3) gave pi-conjugated flat porphyrin tapes. To the best of our knowledge, the meso-meso linked 128-mer is the longest man-made discrete molecule, and the porphyrin tape 12-mer is the most extensively conjugated porphyrin array, as evinced by the lowest electronic band peak at 3500 cm(-1).  相似文献   

12.
The syntheses of eight new star-shaped D(3)-symmetric arrays in which three 15-(pyrid-4-yl)porphyrin subunits are attached to the 1, 3, and 5 positions of a benzene core through linkers consisting of collinear repetitive phenylethynyl units have been carried out using Pd(0)-catalyzed coupling reactions. By the same procedure, an analogous 10-(4-pyridin-yl)porphyrin hexamer in which all positions of the benzene core are substituted has been obtained. Likewise, the preparation of suitably sized cyclic porphyrin hexamers, in which all six or at least three alternate porphyrin rings are complexed with Zn(II) ions, is described in detail. In solution, such cyclic porphyrin hexamers form supramolecular assemblies with the star-shaped polyporphyrins in which the latter are held in the interior of the macrocycle through coordination of the apical pyridine rings with the Zn(II) ions. The suggested structures are supported by (1)H NMR spectroscopic and MALDI-TOF mass spectrometric measurements. They agree with the high values of the binding constants of the corresponding supramolecules, which range between K = 1.1 x 10(10) and 1.4 x10(9) M(-1).  相似文献   

13.
The syntheses of soluble windmill and grid porphyrin arrays through the AgI-promoted coupling reaction of 1,4-phenylene-bridged linear porphyrin arrays, which are comprised of a central ZnII beta-free porphyrin and flanking peripheral NiII beta-octaalkylporphyrins, are described. The coupling reaction is advantageous in light of its high regioselectivity occurring only at the meso-position of the ZnII beta-free porphyrin as well as its easy extension to large porphyrin arrays. The windmill porphyrin arrays in turn serve as an effective substrate for further coupling reactions, to give three-dimensionally arranged grid porphyrin arrays. Further the grid porphyrin 12-mer (a tetramer of the linear porphyrin trimer) was also coupled to afford grid porphyrins (24-mer, 36-mer, and 48-mer). These porphyrin arrays were isolated in a discrete form by repetitive GPC/HPLC (GPC= gel-permiation chromatography). Competitive experiments with three linear porphyrin trimers bearing different peripheral metalloporphyrins (ZnII, NiII, and Cull), and the trapping experiment of the radical cation at the peripheral porphyrin with AgNO2, suggested that an initial one-electron oxidation of the easily oxidizable peripheral ZnII beta-octaalkylporphyrin with an AgI ion and a subsequent endothermic hole transfer assist the generation of the radical cation at the central ZnII beta-free porphyrin. In all ZnII-metallated windmill porphyrin arrays, the energy level of the S1 state of the meso-meso-linked diporphyrin core is lower than that of the peripheral porphyrins, thereby allowing an energy flow from the peripheral porphyrins to the central diporphyrin core; this has been confirmed by measurements of fluorescence lifetimes and picosecond time-resolved fluorescence spectra. The excitation energy transfer in the arrays encourages their potential use as an light-harvesting antenna.  相似文献   

14.
An approach which employs pentameric porphyrin arrays as building blocks toward larger porphyrin arrays is described. Two flexible, and one relatively rigid, Ru-centered porphyrin pentamers (1-3) were synthesized and fully characterized. Their potential as building blocks toward larger porphyrin arrays has been studied via their coordination chemistry using bidentate and tetradentate ligands. DABCO (diazabicyclo[2.2.2]octane) can bind two monomeric porphyrins but was found to be too small to allow the complete formation of a 10-porphyrin array. On the other hand, titration of a larger bridging dipyridyl porphyrin ligand 17 (0.5 equiv) with 1 or 2 and tetrapyridyl ligand 18 (0.25 equiv) with 3 results in the formation of the 11-porphyrin and 21-porphyrin arrays, respectively, with the 21-porphyrin array containing porphyrins in three different metalation states. Changes in the chemical shift of the inner NH protons as well as the ortho- and meso-protons of the pyridyl groups of the porphyrin ligand clearly indicate the formation of large multiple porphyrin complexes. These studies demonstrate that by use of carefully designed building blocks and suitable bridging ligands, porphyrin arrays can be constructed with a dramatic increase in size in relatively few steps. Exploiting the fact that the strength of binding of pyridyl ligands is Ru > Zn > Ni, intra- vs intermolecular competition has been used to investigate aspects of the folding of the array. The photophysical properties of 3 are also described.  相似文献   

15.
Synthesis, structural characteristics, and optical and electrochemical properties of various covalently-linked porphyrin arrays are described. First, aromatic-spacer bridged diporphyrins were prepared in which the diporphyrin geometries were conformationally-restricted and thus suitable for detailed studies on the exciton coupling and the intramolecular energy and/or electron transfer reactions. Secondly, the Ag(I)-salt oxidation of 5,15-diaryl Zn(II) porphyrins provided mesomeso-linked Zn(II)-diporphyrins. This reaction is advantageous in light of its high regioselectivity and easy extension to longer porphyrin arrays. The doubling reaction was repeated up to the synthesis of a discrete 128-mer, which is, to the best of our knowledge, the longest man-made molecule. Finally, the oxidation of mesomeso-linked Zn(II) porphyrin arrays with a combination of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and Sc(III)(OTf)3 produced fused porphyrin arrays with full π-conjugation, which displayed extremely small HOMO–LUMO gaps that reach into the infrared region.  相似文献   

16.
A series of meso-to-meso ethynyl-bridged multiporphyrin arrays have been synthesized using Sonogoshira palladium-catalyzed cross-coupling reactions involving the appropriate ethynylporphyrin and iodoporphyrin precursors. The absorption spectra of these multiporphyrins show splitting of the Soret bands and significant red shifts of the Q bands as compared to the combination of the corresponding components. These conjugated multiporphyrins also show red shifts in their emission spectra as the pi-conjugation is expanded. In the electrochemical measurements, the porphyrins dimer 7 shows two 1 - e- oxidations at E(1/2) = +0.63 and +0.76 V for the first electron abstraction from the two porphyrin rings, indicating electronic communication between the two porphyrin units. The porphyrin trimer 4 exhibits the first and second 1 - e- oxidations at E(1/2) = +0.68 and +0.77 V, respectively, which correspond to the two outer porphyrins. The cyclic voltammogram of pentamer 5 shows two overlapping 1 - e- couples at E(1/2) = +0.56 and +0.66 V, and one 2 - e- couple at E(1/2) = +0.86 V, for the four outer porphyrin units. These results demonstrate that in the porphyrin trimer and pentamer the individual peripheral porphyrin units are electrochemically coupled via a central porphyrin core. The UV-Vis-NIR spectra of the oxidized species of these multiporphyrins exhibit a broad intervalence charge transfer (IVCT) band in the region from 1200 to 3000 nm. The present work shows that a central porphyrin unit appended with ethynyl bridges affords strong electronic interactions between the peripheral porphyrin rings over a distance of about 15 A.  相似文献   

17.
The incorporation of symmetrically branched tridecyl ("swallowtail") substituents at the meso positions of porphyrins results in highly soluble building blocks. Synthetic routes have been investigated to obtain porphyrin building blocks bearing 1-4 swallowtail groups. Porphyrin dyads have been synthesized in which the zinc or free base (Fb) porphyrins are joined by a 4,4'-diphenylethyne linker and bear swallowtail (or n-pentyl) groups at the nonlinking meso positions. The swallowtail-substituted Zn(2)- and ZnFb-dyads are readily soluble in common organic solvents. Static absorption and fluorescence spectra and electrochemical data show that the presence of the swallowtail groups slightly raises the energy level of the filled a(2u)(pi) HOMO. EPR studies of the pi-cation radicals of the swallowtail porphyrins indicate that the torsional angle between the proton on the alkyl carbon and p-orbital on the meso carbon of the porphyrin is different from that of a porphyrin bearing linear pentyl groups. Regardless, the swallowtail substituents do not significantly affect the photophysical properties of the porphyrins or the electronic interactions between the porphyrins in the dyads. In particular, time-resolved spectroscopic studies indicate that facile excited-state energy transfer occurs in the ZnFb dyad, and EPR studies of the monocation radical of the Zn(2)-dyad show that interporphyrin ground-state hole transfer is rapid.  相似文献   

18.
The storage of multiple bits of information at the molecular level requires molecules with a large number of distinct oxidation states. Lanthanide triple-decker sandwich molecules employing porphyrins and phthalocyanines afford four cationic states and are very attractive for molecular information storage applications. Five triple-decker building blocks have been prepared of the type (phthalocyanine)Eu(phthalocyanine)Eu(porphyrin), each bearing one iodo, one ethyne, or one iodo and one ethyne group attached to the porphyrin unit. Two triple-decker building blocks with different oxidation potentials were derivatized with an S-acetylthiophenyl unit for attachment to an electroactive surface. To explore the preparation of arrays comprised of triple deckers, which may lead to the storage of a larger number of bits, two types of dyads of triple deckers were prepared. An ethyne-linked dyad of triple deckers bearing one S-acetylthiophenyl unit was prepared via repetitive Sonogashira couplings, and a butadiyne-linked dyad was prepared via a modified Glaser coupling. The triple deckers were characterized by absorption spectroscopy, laser-desorption mass spectrometry, and (1)H NMR spectroscopy. The thiol-derivatized triple deckers form self-assembled monolayers (SAMs) on gold via in situ cleavage of the thiol protecting group. The SAM of each array is electrochemically robust and exhibits three well-resolved, reversible oxidation waves. These electrochemical characteristics indicate that these types of molecules are well suited for storing multiple bits of information.  相似文献   

19.
We present the synthesis and characterization of new light-harvesting arrays containing two, four, or eight perylene-monoimide accessory pigments attached to a zinc porphyrin. Each perylene is substituted with one or three 4-tert-butylphenoxy substituents. A 4,3'- or 4,2'-diarylethyne linker joins the perylene N-imide position and the porphyrin meso-position, affording divergent or convergent architectures, respectively. The architectures are designed to provide high solubility in organic media and facile perylene-to-porphyrin energy transfer, while avoiding charge-transfer quenching of the excited porphyrin product. For the array containing four perylenes per porphyrin in both nonpolar (toluene) and polar (benzonitrile) media and for the array containing eight perylenes per porphyrin in toluene, the photoexcited perylene-monoimide dye (PMI) decays rapidly ( approximately 3.5 ps) and predominantly (>or=90%) by energy transfer to the zinc porphyrin to form the excited zinc porphyrin (Zn), which has excited-state characteristics (lifetime, fluorescence yield) comparable (within approximately 10%) to those of the isolated chromophore. For the array containing eight perylenes in benzonitrile, PMI decays approximately 80% by energy transfer (forming Zn) and approximately 20% by hole transfer (forming PMI- Zn+); Zn subsequently decays approximately 20% by electron transfer (also forming PMI- Zn+) and approximately 80% by the normal routes open to the porphyrin monomer (intersystem crossing, internal conversion, fluorescence). In addition to rapid and efficient perylene-to-porphyrin energy transfer, the broad blue-green to yellow absorption of the perylene dyes complements the blue absorption of the porphyrin, resulting in excellent light harvesting across a significant spectral region. Collectively, the work described herein identifies multiperylene-porphyrin arrays that exhibit suitable photochemical properties for use as motifs in larger light-harvesting systems.  相似文献   

20.
Abstract

The kinetics of Zn2+ and Zn(OH)+ incorporation into and the kinetics of the acid catalyzed removal of Zn(II) from twelve water-soluble, sulfonated derivatives of tetraphenylporphyrin with alkyl or halogen groups in the para, ortho or di-ortho positions were investigated. While the incorporation reactions showed little dependence on porphyrin basicity, the Zn-P (P = porphyrin derivative) acid solvolysis reactions were faster the higher the basicity of the free base (H2-P) compound. Equilibrium constants for the formation of cadmium porphyrins decreased with an increase in porphyrin basicity. The predeformed tetrakis(4-sulfonatophenyl)-β-octabromo-porphyrin reacted with Zn2+ about 103 times faster than porphyrins of similar basicity. These results indicate how substituents on the phenyl and beta-pyrrole rings influence the solution chemistry of water soluble porphyrins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号