首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study of a double-pipe helical heat exchanger was performed. Two heat exchanger sizes and both parallel flow and counterflow configurations were tested. Flow rates in the inner tube and in the annulus were varied and temperature data recorded. Overall heat transfer coefficients were calculated and heat transfer coefficients in the inner tube and the annulus were determined using Wilson plots. Nusselt numbers were calculated for the inner tube and the annulus. The inner Nusselt number was compared to the literature values. Though the boundary conditions were different, a reasonable comparison was found. The Nusselt number in the annulus was compared to the numerical data. The experimental data fit well with the numerical for the larger heat exchanger. But, there were some differences between the numerical and experimental data for the smaller coil; however these differences may have been due to the nature of the Wilson plots. Overall, for the most part the results confirmed the validation of previous numerical work.  相似文献   

2.
An experimental and numerical study has been performed for oil–water core-annular flow in a horizontal pipe, with a special focus on the effect of the presence of the turbulence in the water annulus. An experimental set-up was built and the obtained experimental results were used for the validation of numerical simulations that were carried out as well. The oil density was considerably lower than the water density, which leads to a rather eccentric oil core. The numerical simulations were carried out for different time dependent, fully 3D conditions. Only when a turbulence model is applied (instead of assuming laminar flow) the agreement between the predictions and the experiments is reasonably good.  相似文献   

3.
Numerical and experimental investigation of a serpentine inlet duct   总被引:1,自引:0,他引:1  
This article presents a numerical and experimental investigation of the flow inside an ultra-compact, serpentine inlet duct. The numerical analysis used two flow solvers: FLUENT®, a commercial code, and UNS3D, an in-house code. The flow was modelled using the Reynolds-averaged Navier-Stokes equations. The turbulence effects were modelled by using the shear-stress transport k–ω model. The numerical investigation was compared against experimental data obtained in an open-circuit, low-speed wind tunnel in the Fluid Dynamics Laboratory at Texas A&M University. The numerical simulations and experimental testing were performed to reveal the separation points and the strong secondary flow phenomena within the inlet. UNS3D overpredicted the location of the first separation point by 9 mm and the location of the second separation point by 1 mm, while the area-averaged pressure loss coefficient was 5% higher than in the experiment. The numerical results of UNS3D agreed better with the experiment than those of FLUENT.  相似文献   

4.
Oltean  C.  Felder  CH.  Panfilov  M.  Buès  M. A. 《Transport in Porous Media》2004,55(3):339-360
The optimal concentration of a blue dye solution with 'tracer' properties, enabling a pollutant to be marked was determined by the use of numerical, theoretical and experimental approaches. Experimental investigations were performed on a transparent Hele–Shaw cell and the concentration distribution was analyzed using an optical technique based on dye light absorption properties. The injected optimal concentration was established thanks to a theoretical and experimental study carried out on the output signal dynamics. Using the same experimental conditions, numerical simulations were performed. The very good agreement between the data (experimental and numerical) clarified that: (i) the choice of the blue dye optimal concentration was valid and (ii) the concentration-dependent density should not be neglected in flow and transport equations even if it concerns a so-called 'tracer'. Following this remark, a theoretical aspect was developed in order to determine the analogous conditions between a Hele–Shaw cell and a porous medium for the variable density transport phenomenon. The structure of the concentration-dependent dispersion tensor used in the numerical code was obtained by homogenizing the Stokes flow of a bi-component mixture. The numerical results show that, as long as the tracer density does not exceed a certain value, it is not necessary to take into account a density contrast in terms of the dispersion tensor. The classical form of the Taylor dispersion tensor can be used successfully.  相似文献   

5.
This paper is the part 2 of our previous thin film heat transfer measurements. In the first report we measured time variations of heat flux over a cylinder placed in a shock tube flow and compared experimental results with CFD results, Saito et al. (Shock Waves 14:327–333, 2004). We report a result of heat transfer measurements over an 86° apex angle cone surface impinged by a Ms = 2.38 shock wave in air with distributed thin film transfer gauges along cone surface and its comparison with results of numerical simulations. We performed double exposure holographic interferometric observation, and also from the heat transfer measurement and numerical simulation, confirmed the presence of delayed transition from regular to Mach reflection over the cone. The numerical estimation of delayed transition distance from the apex agreed very well with experimental one.   相似文献   

6.
The results of numerical and experimental studies of a model configuration of a hypersonic vehicle realizing the principle of compression convergence of the entire jet captured by an air-intake from the oncoming stream are presented. The external flow past a convergent air-intake integrated with a transversely-concave nose compression surface is investigated over the freestream Mach number range from 2 to 6. The salient features of the flow pattern near air-intakes with sidewalls of different length are established and the influence of a limitation on the lateral flow near the external compression wedge on the flow rate characteristics of the air-intake is established. The numerical calculations are performed within the framework of the inviscid gas model using higher-order TVD schemes; the calculated and experimental results are compared.  相似文献   

7.
The results of theoretical and experimental investigations of the hypersonic flow around a plate with a shap leading edge are presented. Step-by-step verification of the numerical model of the full viscous shock layer is performed: the calculated density profiles, shock wave inclinations, and the Stanton numbers are compared with experimental data obtained using the method of electron-beam fluorescence, calorimetric gages and IR imaging system.  相似文献   

8.
A numerical method (pressure-correction method using a staggered grid) is coupled to a thermodynamic model for compressible liquid hydrazine. The method is applied to the venting of liquid hydrazine into space, during which the fluid undergoes a large pressure drop. Below the saturation pressure vaporisation occurs. This takes place near the outlet and induces variations of temperature, which may cause solidification and pipe clogging. In order to assess the risk of phase changes, numerical simulations of the venting line have been performed using a quasi one-dimensional approach. The numerical method can handle compressible flows of fluids with nonconvex equation of state at the low Mach numbers that occur during hydrazine venting. A numerical study of the liquid behaviour during strong depressurisation is performed. The method is validated using experimental data, and allows prediction of pressure evolution and vaporisation location along the pipe. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
This work addresses both experimental and numerical analyses regarding the tensile behaviour of CFRP single-strap repairs. Two fundamental geometrical parameters were studied: overlap length and patch thickness. The numerical model used ABAQUS® software and a developed cohesive mixed-mode damage model adequate for ductile adhesives, and implemented within interface finite elements. Stress analyses and strength predictions were carried out. Experimental and numerical comparisons were performed on failure modes, failure load and equivalent stiffness of the repair. Good correlation was found between experimental and numerical results, showing that the proposed model can be successfully applied to bonded joints or repairs.  相似文献   

10.
A constrained interpolation profile CIP-based numerical tank is developed to simulate violent free surface flows.The numerical simulation is performed by the CIP-based Cartesian grid method,which is described in the present paper.The tangent of hyperbola for interface capturing(THINC) scheme is applied for capturing complex free surfaces.The new model is capable of simulating a flow with violently varied free surface.A series of computations are conducted to assess the developed algorithm and its versatility.These tests include the collapse of water column with and without an obstacle,sloshing in a fixed tank,the generation of regular waves in a tank,the generation of extreme waves in a tank.Excellent agreements are obtained when numerical results are compared with available analytical,experimental,and other numerical results.  相似文献   

11.
Supercritical regimes of thermal convection in a Hele-Shaw cell heated from below are investigated experimentally and theoretically. A stability map of convective regimes is plotted. Novel stable and transient pulsatory convective flows are revealed. The numerical calculations performed for a cell with thermally insulated vertical faces are in agreement with the experimental data.  相似文献   

12.
A mathematical model is presented, and numerical experiments are performed to describe the mechanics of the slow movement of a pipeline. The problem reduction algorithm to one-dimensional formulation is offered. Results of numerical experiment for the model problem are adduced. The proposed mathematical model is found to adequately describe the dynamics of known phenomena of pipes. The cross-sections of the extended curvilinear thin-walled pipeline are numerically demonstrated to experience warping, which has experimental confirmation in the literature.  相似文献   

13.
A numerical and experimental analysis is performed to study the laminar free convection above a horizontal plate facing upward subjected to an uniform heat flux. The surface of the plate, in contact with the fluid, is described by a sinusoidal profile. The natural convection equations are discretized, using an implicit finite difference technique, based on the finite volume approach. The SIMPLE algorithm assumes the linkage between velocities and pressure fields. The top and the lateral boundaries of the space, where free convection is developing, are determined by using an iterative procedure. The temperature fields of the fluid, over the plate, are visualized by an experimental device, which can realize a simultaneous measurement of the temperature and the position. Qualitative information about the natural convection flow above the plate is obtained by using a laser tomography technique. The numerical results show that the flow and the heat transfer are strongly affected by the amplitude, the period of the sinusoidal profile and the type of fluid. Comparisons between numerical and experimental results show a good qualitative agreement.  相似文献   

14.
方形管内楔形障碍物对火焰结构与传播的影响   总被引:1,自引:0,他引:1  
通过实验与数值模拟方法对CH4/空气预混火焰在有楔形障碍物的卧式燃烧方管内的传播进行了研究。采用多镜头Cranz Schardin高速摄像机和压力传感器等实验设备获得了高清晰度的障碍物诱导火焰失稳的分幅时序照片以及障碍物背风表面压力变化曲线。数值模拟则基于RANS方法与EDU-Arrhenius燃烧模型,计算结果与实验结果基本相符,反映了火焰在管内传播与变形的详细过程。通过综合分析实验与计算结果,得到了由楔形障碍物导致的火焰加速与变形的内在机理,揭示了火焰传播过程中由层流燃烧向湍流燃烧转捩的本质。  相似文献   

15.
The results of a numerical study of the laminar-turbulent transition in unsteady isothermal three-dimensional flows of viscous incompressible fluid in a thick spherical layer between counter-rotating spherical boundaries are presented. The calculations are performed for the governing parameters corresponding to the experimental data [1, 2]. The numerical investigations include both solving the complete system of Navier-Stokes equations and analyzing the linear stability of steady-state axisymmetric flows with respect to three-dimensional disturbances. A stochastic flow regime is calculated for the first time. The limits of existence of different flow regimes and the hysteresis regions are found. The spatial flow patterns and frequency characteristics are obtained, which makes it possible to extend and refine the existing experimental data.  相似文献   

16.
17.
A numerical analysis has been performed for a developing turbulent flow in a rotating U-bend of strong curvature with rib-roughened walls using an anisotropic turbulent model. In this calculation, an algebraic Reynolds stress model is used to precisely predict Reynolds stresses, and a boundary-fitted coordinate system is introduced as a method of coordinate transformation to set the exact boundary conditions along the complicated shape of U-bend with rib-roughened walls. Calculated results for mean velocity and Reynolds stresses are compared to the experimental data in order to validate the proposed numerical method and the algebraic Reynolds stress model. Although agreement is certainly not perfect in all details, the present method can predict characteristic velocity profiles and reproduce the separated flow generated near the outer wall, which is located just downstream of the curved duct. The Reynolds stresses predicted by the proposed turbulent model agree well with the experimental data, except in regions of flow separation.  相似文献   

18.
The aim of this work is to present a new numerical method to compute turbulent flows in complex configurations. With this in view, a k-? model with wall functions has been introduced in a mixed finite volume/finite element method. The numerical method has been developed to deal with compressible flows but is also able to compute nearly incompressible flows. The physical model and the numerical method are first described, then validation results for an incompressible flow over a backward-facing step and for a supersonic flow over a compression ramp are presented. Comparisons are performed with experimental data and with other numerical results. These simulations show the ability of the present method to predict turbulent flows, and this method will be applied to simulate complex industrial flows (flow inside the combustion chamber of gas turbine engines). The main goal of this paper is not to test turbulence models, but to show that this numerical method is a solid base to introduce more sophisticated turbulence model.  相似文献   

19.
A numerical model for free-surface flow of a viscoplastic liquid into a cavity is presented. This flow is regarded as a basic model of injection molding, which is a widely used processing technology. Model experiments of the injection process are performed with a water-based gel with shear-thinning behavior. The filling process is visualized by tracing the free surface of the gel within the cavity. Filling times of the cavity are deduced from the experimental observations. The filling process is also analyzed by means of numerical simulation.The flow equations are integrated according to the finite-volume method. The volume-of-fluid method is employed in order to describe the flow of two incompressible, immiscible phases, the phase interface is resolved by the method of geometric reconstruction or alternatively by the method of surface compression. The Herschel–Bulkley model is used in order to describe the shear-thinning behavior of the gel and the effects of a yielding point. The governing equations of the flow are solved by means of the commercial code Fluent as well as the Open Source code OpenFOAM.The results of the numerical simulations are analyzed in detail. They are compared with the experimental findings. Cavity filling times in the experiments and the simulations are in good agreement. Different patterns of the filling flow depending on the injection parameters are evident in the experiments and the simulations. They are characterized and arranged with respect to the similarity parameters of the flow configuration. Again, the results of the simulation are found to agree well with the experimental observations.  相似文献   

20.
An experimental study of the tuned operation of a free-piston driver is described. Two series of experiments were carried out. The first was performed to validate a theory which has been developed recently to predict the operation with a small free piston-driver named NAL-CTA. The driver has a transparent window at the end of the compression tube to allow observation of piston motion. In the second, a theoretically determined length of piston buffer was used to tune the operating condition. Piston collision speeds of less than 3 m/sec were observed. A quasi-one-dimensional numerical code including leakage of driver gas through the piston clearance gap was derived. The numerical result agreed well with the experimental result. It is concluded that tuned operation, by using an appropriate length of the piston buffer, can be extrapolated to large-size tunnels. Received 6 March 1998 / Accepted 29 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号