首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
多金属氧酸盐电致变色材料   总被引:1,自引:0,他引:1  
多金属氧酸盐具有多样的结构和良好的电化学可逆性,在电致变色器件(例如军事伪装、后视镜、智能窗以及高对比度信息显示器)上有着广阔的应用前景。本文综述了多金属氧酸盐在电致变色领域的研究进展情况。概述了多金属氧酸盐的电致变色机理以及制备多金属氧酸盐电致变色薄膜的方法,主要包括:溶胶-凝胶方法、电沉积法、Langmuir-Blodgett方法、层接层自组装方法。按照多金属氧酸盐的结构类型分类,结合最新文献报道,介绍了同多酸(盐)型和杂多酸(盐)型电致变色材料性能的研究现状。最后,对其未来的发展方向进行了展望。  相似文献   

4.
Aggregation in Langmuir films is usually understood as being a disorderly grouping of molecules turning into chaotic three-dimensional aggregates and is considered an unwanted phenomenon causing irreversible changes. In this work we present the studies of 11 compounds from the group of specific surfactants, known as bolaamphiphiles, that exhibit reversible aggregation and, in many cases, transition to well-defined multilayers, which can be considered as a layering transition. These bolaamphiphiles incorporate rigid π-conjugated aromatics as hydrophobic cores, glycerol-based polar groups and hydrophobic lateral chains. Molecules of different shapes (X-, T-, and anchor) were studied and compared. The key property of these compounds is the partial fluorination of the lateral chains linked to the rigid cores of the molecules. The most interesting feature of the compounds is that, depending on their shape and degree of fluorination, they are able to resist aggregation and preserve a monolayer structure up to relatively high surface pressures (T-shaped and some X-shaped molecules), or create well-defined trilayers (X- and anchor-shaped molecules). Experimental studies were performed using Langmuir balance, surface potential and X-ray reflectivity measurements.  相似文献   

5.
6.
Getting organized : Assemblies of ferromagnetic FePt nanoparticles were generated with large perpendicular magnetic anisotropy by a magnetic‐field‐assisted layer‐by‐layer method, and subsequently layer‐by‐layer films consisting of L10‐FePt nanoparticles and organic polymers were prepared. These films are phototunable when photochromic molecules are used as polymer layers.

  相似文献   


7.
8.
Inorganic graphene analogues (IGAs) are a huge and fascinating family of compounds that have extraordinary electronic, mechanical, and thermal properties. However, one of the largest problems that face the industrial application of IGAs is their poor processability, which has led to a “bottlenecking” in the development of freestanding, large‐area, IGA‐based thin‐film devices. Herein, we report a facile and cost‐efficient method to chemically modify IGAs by using their abundant coordination atoms (S, O, and N). Taking MoS2 as an example, we have prepared homogeneous “solution” systems, in which MoS2 nanosheets are chemically cross‐linked through a carboxylate‐containing polymeric ligand, poly(methyl methacrylate) (PMMA), by copper‐ion coordination. Bonding interactions between C?O bonds and sulfur atoms through copper ions were confirmed by various characterization techniques, such as UV/Vis, FTIR, and Raman spectroscopy and XPS. By using our method, freestanding MoS2 paper with significantly improved mechanical properties was obtained, thus laying the basis for the mass production of large‐area MoS2‐based thin‐film devices. Furthermore, copper‐ion coordination was also applied to MoS2/PMMA nanocomposites. Direct and strong nanofiller/matrix bonding interactions facilitate efficient load transfer and endow the polymeric nanocomposites with an excellent reinforcement effect. This method may pave a new way to high‐strength polymeric nanocomposites with superior frictional properties, flame retardance, and oxidation resistance.  相似文献   

9.
10.
《化学:亚洲杂志》2017,12(22):2922-2928
For the first time, a crystalline–amorphous double‐layered NiOx film has been prepared by reactive radio frequency magnetron sputtering. This film has exhibited improved electrochemical cycling durability, whereas other electrochromic parameters have been maintained at the required level, namely, a short coloration/bleaching time (0.8 s/1.1 s) and an enhanced transmittance modulation range (62.2 %) at λ =550 nm. Additionally, the double‐layered film has shown better reversibility than that of amorphous and crystalline single‐layered films.  相似文献   

11.
原位聚合沉积聚苯胺薄膜及其电致变色性能   总被引:2,自引:0,他引:2  
采用原位聚合的方法,以水溶性高分子聚乙烯吡咯烷酮(PVP)为空间稳定剂,直接在玻璃基体表面聚合沉积导电聚苯胺(PANI)薄膜。用扫描电镜(SEM)、紫外可见光谱(UV-Vis)、四探针电导率测试仪和热重分析仪(TG)对聚苯胺膜结构及性能进行了表征。采用循环伏安法测试了薄膜的电致变色性。结果表明:盐酸掺杂聚苯胺薄膜呈翠绿色,薄膜厚115 nm,表面电导率为4.6×10-3S/cm。电致变色实验中聚苯胺电极电位在-6~ 6 V循环变化时,薄膜颜色在黄绿和蓝绿间可逆变化。电致变色前后聚苯胺薄膜的紫外可见吸收光谱表明,随着电极电位的降低,极化子峰发生红移,说明聚苯胺分子链中醌式结构单元被还原,聚苯胺薄膜质子化程度提高。  相似文献   

12.
Nanomaterials have been widely used for applications in biomedical fields and could become indispensable in the near future. However, since it is difficult to optimize in vivo biological behavior in a 3D environment by using a single cell in vitro, there have been many failures in animal models. In vitro prediction systems using 3D human‐tissue models reflecting the 3D location of cell types may be useful to better understand the biological characteristics of nanomaterials for optimization of their function. Herein we demonstrate the potential ability of 3D engineered human‐arterial models for in vitro prediction of the in vivo behavior of nanoparticles for drug delivery. These models enabled optimization of the composition and size of the nanoparticles for targeting and treatment efficacy for atherosclerosis. In vivo experiments with atherosclerotic mice suggested excellent biological characteristics and potential treatment effects of the nanoparticles optimized in vitro.  相似文献   

13.
14.
制备了掺杂靛红的聚吡咯(PPy)膜修饰电极,这种功能化PPy膜电极具有很好的电色效应,其颜色变化明显,响应时间短,稳定性好,是一种新型电色材料。  相似文献   

15.
16.
17.
18.
In this paper, three‐dimensionally ordered macroporous (3DOM) poly(3,4‐ethylenedioxythiophene) (PEDOT) films were electropolymerized from an ionic liquid, 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([Bmim]PF6). The electrochromic performances of the 3DOM PEDOT films were studied. The 3DOM films exhibited high transmittance modulation (41.2 % at λ=580 nm), high ionic fast switching speeds (0.7 and 0.7 s for coloration and bleaching, respectively), and enhanced cycling stability relative to that exhibited by the dense PEDOT film. The relationship between the declining behavior of the transmittance modulation and the nanostructure of the film was investigated. A three‐period decay process was proposed to understand the declining behavior. The 3D interconnected macroporous nanostructure is beneficial for fast ion and electron transportation, high ion accessibility, and maintenance of structure integrity, which result in enhanced cycling stability and fast switching speeds.  相似文献   

19.
Thin solid films of mixed Fe/Ti oxide composition (Fe/Ti molar ratios: 0.5∶1, 1∶1, 1.5∶1) have been made from Fe(NO3)3 alcoholic solution to which Ti(OiPr)4 was added. Films have been deposited by the dip-coating technique and heat-treated at 300°C and 500°C. Powders of Fe/Ti oxide heat-treated at 300°C are amorphous, while powders annealed at 500°C for 40 hours transformed to mixed rutile, pseudobrookite and hematite phases. The structure of the XRD amorphous films was identified with the help of near-normal reflection absorption (6°) (IRRA) and near-grazing incidence angle (NGIA) spectroscopy. NGIA FT-IR spectra of films are characterised with a single phonon mode appearing in the spectral range 600–950 cm−1 which shifts with increasing Ti concentration from 675 cm−1 (Fe2O3) to 904 cm−1 (TiO2) thus exhibiting one-mode behavior. Electrochemical investigations made with the help of cyclic voltammetry (CV) and chronocoulometry (CPC) performed in 0.01M LiOH and in 1M LiClO4/propylene carbonate electrolytes revealed that films are able to uptake reversibly Li+ ions with a charge capacity (Q) per film thickness (d) in the range 0.1–0.26 mC/cm2nm and 0.06 mC/cm2nm, respectively. The temperature at which the films were prepared alters the rate of Li+ insertion which is faster for less compact films obtained at 300°C. In situ UV-VIS spectroelectrochemical measurements revealed that Fe/Ti oxide films bleached in the UV spectral region (300 nm<λ<450 nm) and colored in the VIS spectral region (450 nm<λ<800 nm), thus exhibiting mixed anodic and cathodic electrochromism.  相似文献   

20.
为了提高薄膜[PEI/P_5W_(30)]_(30)的电致变色性能,将具有大的二维尺寸和良好导电性的氧化石墨烯引入该薄膜中。通过层层自组装(LBL)技术构筑了基于盘状多酸K12.5Nal.5[Na P_5W_(30)O_(110)]·15H_2O(P_5W_(30))、氧化石墨烯(GO)的复合薄膜[PEI/P_5W_(30)/PEI/GO]_(30)(PEI:聚乙烯亚胺),并利用UV-Vis光谱对薄膜的组成及增长进行监测;通过原子力显微镜对薄膜的表面形貌进行考察,利用循环伏安法对薄膜电化学氧化还原性质进行研究;薄膜在外加氧化还原电位下呈现出无色/蓝色的可逆变化,电致变色响应时间在10 s以内;此外,薄膜在阶跃电位0.75 V/-0.75 V下循环150次,电致变色性能没有明显减弱,体现了薄膜良好的电致变色可逆性。氧化石墨烯的引入使薄膜[PEI/P_5W_(30)/PEI/GO]_(30)呈现出响应速度快、抗电疲劳强的电致变色性能,将在电致变色器件领域有广阔的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号