首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从理论上讲, 离子阱质谱仪的性能是由阱内电场分布决定的,而电场分布又是由组成离子阱的电极几何结构和离子阱工作电压决定的. 对于矩形离子阱, 即使不考虑其几何结构的偏差, 其阱内的电场分布一般也很复杂. 在矩形离子阱内, 除四极电场外, 还包含多种成分的其他各种高阶场, 它们直接影响离子在阱内的运动轨迹和离子阱质谱的性能. 由于各种电场成分对离子阱内离子运动的影响非常复杂, 还很难从数学上给出精确的解析解, 使得目前从理论上还无法预测高阶场成分对质谱性能的影响. 本工作通过测定不同几何结构的矩形离子阱的稳定图, 从实验上比较了不同场半径, 即不同电场分布条件下的离子阱质谱性能的差别. 实验中, 通过改变离子阱的几何比例结构, 详细测定了不同结构的矩形离子阱的稳定图特征, 并与实验测得的质谱分析结果进行比较. 同时, 我们还详细介绍了矩形离子阱质谱的稳定图的测定方法, 并根据得到的不同情况下的稳定图结构分析了离子阱的质谱性能. 研究结果表明: 可以通过比较试验得到的稳定图结构来判断其离子阱质谱仪的性能如质量分辨能力等. 此外, 实验结果还发现: 对于y方向拉伸结构的矩形离子阱, 其实验绘制得到的是不完整的稳定图. 但根据稳定图边界的特点, 通过采用四极直流电压调制的方法, 可以对y方向拉伸结构的矩形离子阱的性能进行改善, 极大地提高了阱的质量分辨能力.  相似文献   

2.
Quadrupole ion traps are reviewed, emphasizing recent developments, especially the investigation of new geometries, guided by multiple particle simulations such as the ITSIM program. These geometries include linear ion traps (LITs) and the simplified rectilinear ion trap (RIT). Various methods of fabrication are described, including the use of rapid prototyping apparatus (RPA), in which 3D objects are generated through point-by-point laser polymerization. Fabrication in silicon using multilayer semi-conductor fabrication techniques has been used to construct arrays of micro-traps. The performance of instruments containing individual traps as well as arrays of traps of various sizes and geometries is reviewed. Two types of array are differentiated. In the first type, trap arrays constitute fully multiplexed mass spectrometers in which multiple samples are examined using multiple sources, analyzers and detectors, to achieve high throughput analysis. In the second, an array of individual traps acts collectively as a composite trap to increase trapping capacity and performance for a single sample. Much progress has been made in building miniaturized mass spectrometers; a specific example is a 10 kg hand-held tandem mass spectrometer based on the RIT mass analyzer. The performance of this instrument in air and water analysis, using membrane sampling, is described.  相似文献   

3.
An attempt has been made to compare the performance, design and operation of three simulators, ISIS, ITSIM and SIMION-3D, when applied to the calculation of ion trajectories in a quadrupole ion trap. For the simulation of the trajectory of a single ion in a collision-free system, the calculated spatial trajectory components, kinetic energies and secular frequencies from the three simulators were virtually identical. It is concluded that, despite the various approaches to electrode design, calculation of fields, integration methods and ion generation tactics, there is a remarkable degree of consistency among the products of the simulators when dealing with collision-free conditions. The results of the ion injection simulations under collisional conditions were indicative of the complexity that can be introduced into the simulations with little effort. Random effects such as collisions of ions with He buffer gas and accumulated calculation errors together with the different collision model settings and the different approaches to field calculation are thought to have contributed to the somewhat minor differences in trapping efficiency. SIMION is the simulator of choice for the simulation of ion trajectories in hybrid instruments and in custom-designed assemblies of electrodes; and ITSIM would appear to be the best choice on the basis of computational speed for running multiparticle simulations and user friendliness. Both ISIS and ITSIM are adept at providing detailed information of collision events. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

4.
The performance of commercial quadrupole mass spectrometers (QMS) with a number of imperfections, as compared to the ideal hyperbolic geometry, has been characterized using the computer simulation program version 6.0. The analysis of simulated QMS geometries focuses primarily on modeling of the internal potential, the study of field deviations, and the influence of finite length on performance of the QMS. The computer simulation of ion trajectories in the QMS field yields predictions for optimum working conditions and provides estimates for the resolving power and the maximum isotopic abundance sensitivity. Experimental measurements that confirm these expectations are presented. Optimization of the geometry and various operational parameters of the QMS is an important step in the development of a system for highly selective ultratrace determination using laser-based resonance ionization mass spectrometry.  相似文献   

5.
In this paper, the shapes of the electrodes are modified based on a rectilinear ion trap to achieve unidirectional ejection of ions. The designed asymmetric rectilinear ion trap (ARIT) analyzer adds convex and concave circular structures with a height of 0.5 mm on the two X‐electrodes, so that the electric field center of the ion trap is inclined to the concave side. The electric field lines of the convex side are compressed to the concave side. Both simulations and experimental results show that ions are more likely to emit from the slit on the concave side plate when performing ion resonance ejection. The mass spectrum signal intensity can reach more than twice that of the original rectilinear trap when using only one detector. Calculations of the electric field components in the trap show that the even‐order higher field proportion in the ion trap has not been significantly affected. Combined with the experimental test results, the study further confirmed that the developed ARIT has no significant loss in mass resolution, tandem mass spectrometry capability, and quantitative analysis capability. The proposed asymmetric structure modification scheme can achieve single‐side ejection without significantly affecting other performances of the analyzer, which provides a new idea for the structural optimization of the subsequent ion trap analyzers.  相似文献   

6.
本研究从理论上优化了一种新型结构的线型离子阱质量分析器-阶梯电极离子阱质量分析器,它是由2对阶梯电极与1对端盖电极组成。与传统平板电极矩形离子阱长阶梯电极离子阱相比,具有调节电场分布的优点,同时在几何结构设计上更接近于双曲面电极结构,但比双曲面电极更容易加工。通过改变阶梯电极结构的高度、宽度、场半径比例等几何参数,实现了对离子阱内部电场分布的优化,从而实现离子阱性能的优化。理论模拟研究结果表明,根据几何结构和电场分布优化获得的阶梯电极离子阱质量分析器(X0×Y0=9 mm×5 mm),可以在225 Da/ s 扫速下获得10150的质量分辨率。阶梯电极离子阱结构简单,分辨能力明显高于矩形离子阱。初步的实验结果表明,阶梯电极离子阱具有较好的串级质谱分析性能。  相似文献   

7.
Computer simulation of single-ion trajectories in paul-type ion traps   总被引:1,自引:0,他引:1  
The computer simulation of single-ion trajectories using a number of computer programs is described together with associated theory. The programs permit calculation of ion trajectories while the ion is subjected to collisions with buffer gas of variable pressure, resonance excitation in any of three modes, and static or ramped DC and radiofrequency levels. Initially, the programs were designed for the calculation of ion trajectories in a quadrupole ion trap. The programs now permit such calculations for ions confined in traps having electrodes shaped to include percentages of hexapole and octupole components in the electric field as well as electrode surface geometries for which there is no closed-form expression. The Langevin collision theory is reviewed and a theoretical treatment of the multipole trap is presented.  相似文献   

8.
The effects of the application of various DC magnitudes and polarities to an end-cap of a 3-D quadrupole ion trap throughout a mass spectrometry experiment were investigated. Application of a monopolar DC field was achieved by applying a DC potential to the exit end-cap electrode, while maintaining the entrance end-cap electrode at ground potential. Control over the monopolar DC magnitude and polarity during time periods associated with ion accumulation, mass analysis, ion isolation, ion/ion reaction, and ion activation can have various desirable effects. Included amongst these are increased ion capture efficiency, increased ion ejection efficiency during mass analysis, effective isolation of ions using lower AC resonance ejection amplitudes, improved temporal control of the overlap of oppositely charged ion populations, and the performance of "broad-band" collision induced dissociation (CID). These results suggest general means to improve the performance of the 3-D ion trap in a variety of mass spectrometry and tandem mass spectrometry experiments.  相似文献   

9.
In a digital ion trap (DIT), the quadrupole trapping and excitation waveforms are generated by the rapid switching between discrete d.c. voltage levels. As the timing of the switch can be controlled precisely by digital circuitry, the approach provides an opportunity to generate mass spectra by means of a frequency scan in contrast to the conventional voltage scan, thus providing a wider mass range of analysis. An instrument has been constructed which employs a 'non-stretched' ion trap and the field fault around the aperture of the end-cap electrode can be corrected electronically using a field-adjusting electrode. The ion trap was coupled with electrospray ionization (ESI) and atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) sources to demonstrate the capability of the digital method. AP-MALDI mass spectra of singly charged ions with mass-to-charge ratios upto 17 000 Th were generated using a trapping voltage of only 1000 V. Forward and reverse mass scans at resolutions up to 19 000 and precursor ion isolation at resolutions up to 3500 with subsequent tandem mass spectrometric analysis were demonstrated. The method of generating the digital waveforms and period scan is described. Discussion of the issues of mass range, scan speed, ion trapping efficiency and collision-induced dissociation efficiency are also provided.  相似文献   

10.
Performing wideband ion image current detection mass spectrometry experiments with an electric ion trap—e. g., the Paul trap—is a difficult task, as there is a strong crosstalk current induced by the high voltages of the radio frequency (rf) storage field. In a classic Paul trap the metallic hyperbolic electrodes (a ring electrode and two end cap electrodes) are shaped following the isopotential lines of the quadrupole potential distribution. In our new design the ring electrode is replaced by a cylindrical series of ring electrodes with a parabolic potential distribution, whereas the end cap electrodes are used without modification. Thus the quadrupole field within the trap remains unchanged but the capacitances between the electrodes and therefore the crosstalk currents are significantly reduced. The remaining crosstalk is balanced out by an electronic compensation technique. As a consequence the weak signals of the ion-induced charge can be detected with a wideband low-noise amplifier to perform Fourier transform mass spectrometry experiments with improved signal-to-noise ratio.  相似文献   

11.
A new technique has been developed which allows the direct measurement of frequencies of ions trapped in a quadrupole ion trap mass spectrometer. This pump/probe method employs a fast direct current (DC) pulse (pump) to displace a kinetically cooled ion population from the center of the trap, and a laser (probe) which recognizes when ions reappear at the center of the trap by the formation of photodissociation fragments. The translationally excited ions undergo periodic motion within the confines of the ion trap, and this periodic motion can be followed by recording the intensity of the photodissociation fragment as a function of the delay time between the DC pump and the laser probe. The DC pulse has a rise time of 15 ns; data are taken 1 ms after its application to allow stable ion motion to be sampled. Sampling of the ion cloud is done at 50 ns intervals, and fast Fourier transformation of the time-based data yields the ion frequencies and their relative magnitudes. Data are reported for ions derived from acetophenone (m/z 105) and 1,4-cyclohexadiene (m/z 80) under various trapping conditions corresponding to different Mathieu qz values. The measured fundamental secular frequencies, fz and fr, are found to agree well with those predicted. The presence of higher order multipole contributions to the trapping field is evident from such ion frequencies as the drive frequency, fRF,. The ability to measure ion frequencies under operating conditions provides a new tool for comparing simulated and experimental data. Simulation data from the program ITSIM, modified to account for the effects of collisions, are shown to predict the major frequency components observed in the experimental data.  相似文献   

12.
The polygonal electrode linear ion trap (PeLIT) can produce quadrupolar electric field plus some higher order field, which balances the relationship between mass resolution and electrode manufacturing difficulties. The electrodes of PeLIT are relatively simple, but have a good mass resolving power. This study investigated the relationship between the electric field distribution and the ion trap structures, and the performances of PeLIT through theoretical simulation and experimental study. Research results of simulation showed that the polygonal electrode linear ion traps with different structures had different electric field distributions and mass analysis performances. The negative decapole field distorted the performances significantly. The experimental results showed that the mass resolution of reserpine ions (m/z 609) was more than 2500 using a polygonal electrode ion trap. At the same time, mass selective excitation and tandem mass spectrometry experiments were also carried.  相似文献   

13.
Applying dipolar DC (DDC) to the end-cap electrodes of a 3-D ion trap operated with a bath gas at roughly 1 mTorr gives rise to ‘rf-heating’ and can result in collision-induced dissociation (CID). This approach to ion trap CID differs from the conventional single-frequency resonance excitation approach in that it does not rely on tuning a supplementary frequency to coincide with the fundamental secular frequeny of the precursor ion of interest. Simulations using the program ITSIM 5.0 indicate that application of DDC physically displaces ions solely in the axial (inter end-cap) dimension whereupon ion acceleration occurs via power absorption from the drive rf. Experimental data shows that the degree of rf-heating in a stretched 3-D ion trap is not dependent solely on the ratio of the dipolar DC voltage/radio frequency (rf) amplitude, as a model based on a pure quadrupole field suggests. Rather, ion temperatures are shown to increase as the absolute values of the dipolar DC and rf amplitude both decrease. Simulations indicate that the presence of higher order multi-pole fields underlies this unexpected behavior. These findings have important implications for the use of DDC as a broad-band activation approach in multi-pole traps.  相似文献   

14.
In recent work (Int. J. Mass Spec., vol. 282, pp. 112–122) we have considered the effect of apertures on the fields inside rf traps at points on the trap axis. We now complement and complete that work by considering off-axis fields in axially symmetric (referred to as “3D”) and in two dimensional (“2D”) ion traps whose electrodes have apertures, i.e., holes in 3D and slits in 2D. Our approximation has two parts. The first, EnoAperture, is the field obtained numerically for the trap under study with apertures artificially closed. We have used the boundary element method (BEM) for obtaining this field. The second part, EdueToAperture, is an analytical expression for the field contribution of the aperture.In EdueToAperture, aperture size is a free parameter. A key element in our approximation is the electrostatic field near an infinite thin plate with an aperture, and with different constant-valued far field intensities on either side. Compact expressions for this field can be found using separation of variables, wherein the choice of coordinate system is crucial. This field is, in turn, used four times within our trap-specific approximation.The off-axis field expressions for the 3D geometries were tested on the quadrupole ion trap (QIT) and the cylindrical ion trap (CIT), and the corresponding expressions for the 2D geometries were tested on the linear ion trap (LIT) and the rectilinear ion trap (RIT). For each geometry, we have considered apertures which are 10%, 30%, and 50% of the trap dimension. We have found that our analytical correction term EdueToAperture, though based on a classical small-aperture approximation, gives good results even for relatively large apertures.  相似文献   

15.
新型三角形电极圆环离子阱的理论模拟研究   总被引:1,自引:0,他引:1  
圆环离子阱由于其离子储存能力明显优于相同体积下的三维离子阱,近年来被认为是离子阱小型化发展的另一个重要方向。为进一步优化圆环形离子阱的质谱性能,特别是质量分辨能力,本研究提出了一种由三角形电极构建的新型圆环离子阱,它由两个完全等同的、截面为三角形的圆环电极及两个大小不等的圆筒型电极所组成,离子通过共振激发方式弹出。通过理论模拟和对电极结构的优化,获得了具有非对称性的三角形电极结构,通过改善圆环结构,优化电场分布,提高了离子引出效率和离子阱的质量分辨能力,其中一种最优化结构的圆环离子阱对m/z 609离子的质量分辨率达到1486。  相似文献   

16.
印刷线路板分压离子阱的离子单向出射性能研究   总被引:3,自引:0,他引:3  
印刷线路板(Printed-Circuit-Board,PCB)分压离子阱是一种新型质量分析器,其突出优点在于内部电场可通过调节射频分压比进行优化.本实验在PCB分压离子阱离子出射方向的两组离散电极上配置了非对称的射频分压,以引入奇次阶场成分,使得射频电场的场中心(即离子运动中心)发生偏移,从而实现离子单向出射.通过数值计算软件SIMION和AXSIM分析了射频分压比差值与其内部电场分布的关系,并模拟离子运动轨迹,得到离子出射情况和模拟质谱峰.模拟结果表明,当两组离散电极的射频分压比差值为20%时,在合适的AC频率条件下,对于m/z=609 Th的离子,PCB分压离子阱的离子单向出射率可达90%以上,且质量分辨率大于2500.本研究可使PCB分压离子阱在基本不损失质量分辨率和使用单检测器模式下,大幅提高离子检测效率,因而在小型化质谱仪应用中具有显著优势.  相似文献   

17.
Ion/ion proton transfer reactions involving mutual storage of both ion polarities in a linear ion trap (LIT) that comprises part of a hybrid triple quadrupole/linear ion trap mass spectrometer have been effected. Mutual ion storage in the x- and y-dimensions arises from the normal operation of the oscillating quadrupole field of the quadrupole array, while storage in the z-dimension is enabled by applying unbalanced radio-frequency amplitudes to opposing sets of rods of the array. Efficient trapping (>90%) is achieved for thermalized ions over periods of several seconds. Reactions were demonstrated for multiply charged protein/peptide cations formed by electrospray with anions derived from glow discharge ionization of perfluoro(methyldecalin) (PMD) introduced from the side of the LIT rod array. Doubly and singly charged protein ions are readily formed via ion/ion reactions. The parameters that affect ion/ion reactions are discussed, including the degree of RF unbalance on the LIT rods, vacuum pressure, nature of the buffer gas, reaction time, anion abundance, and the low mass cutoff for ion/ion reaction. The present system has a demonstrated upper mass-to-charge ratio limit of at least 33,000. The system also has high flexibility with respect to defining MS(n) experiments involving both collision-induced dissociation (CID) and ion/ion reactions. Experiments are demonstrated involving beam-type CID in the pressurized collision quadrupole (Q2) followed by ion/ion reactions involving the product ions in the LIT. Ion parking experiments are also demonstrated using the mutual storage ion/ion reaction mode in the LIT, with a parking efficiency over 60%.  相似文献   

18.
A quadrupolar electric field driven by a rectangular wave voltage can be used for mass-selective storage and analysis. The ion motion in such an electric field is derived, and the stability of ions is presented in the a-q diagram that is commonly used for sinusoidal wave quadrupole mass spectrometry in association with the solution of the Mathieu equation. The pseudo-potential well is discussed in an approximation that leads to the relation of secular frequency to operating parameters. A scheme for a digital ion trap mass spectrometer is described, based on this theory. An ion optics simulation was performed to check the theory of resonant ejection, and to prove the feasibility of the mass scan method for a practical ion trap of such geometry.  相似文献   

19.
With the recent trend towards mass spectrometer miniaturization, the fabrication of mass analyzers and other ion optical components is being performed at scales where critical dimensions range from several millimeters to several micrometers. Depending on the sizes of the objects and the nature of the fabrication method used, electrode surface roughness can become non‐negligible and affect the analytical performance of the mass analyzer. In this work, a method of characterizing surface roughness is introduced through the concept of spatial roughness frequency. The roughness of a given surface is quantitatively described using spatial roughness components at a series of frequencies and with characteristic intensities. Based on this concept, an analytical method has been developed to describe the electromagnetic field inside an electrode assembly including consideration for the electrode roughness. The methodology is applied in simplified form to cylindrical and rectilinear ion trap analyzers. Four types of surface finishes were applied to ion trap electrodes of various sizes to illustrate the surface roughness effects on the high‐order fields and to compare the analytical performance of the ion traps. Application of this method to arrays of large numbers of micro‐scale ion traps has enabled the impact of fabrication methodology to be evaluated in terms of mass resolution for the ion trap arrays. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
A simulation study is described of the behaviour of ions confined in a quadrupole ion trap during each of two separate operations of a tandem mass spectrometric experiment. The two operations are those of mass-selective ion isolation and mass-selective resonance excitation to the point of ion ejection from the ion trap. The method of mass-selective ion isolation simulated is that of consecutive ion isolation. Simulation data indicate that the collisional history of the ions prior to the isolation process can greatly influence the degree to which ions survive this process. Simulation data for mass-selective resonance ejection are compared with experimental data obtained with a Finnigan-MAT ion trap mass spectrometer. In each operation, the facility with which ions absorb energy from the field within the ion trap, whether this field is derived from the R.F. drive potential or a supplementary potential, can determine the extent to which ions are retained within the ion trap during the two mass-selective operations described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号