首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This study aimed at exploring influence of T-semi attached rib on the turbulent flow and heat transfer parameters of a silver-water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. For this purpose, convection heat transfer of the silver-water nanofluid in a ribbed microchannel was numerically studied under a constant heat flux on upper and lower walls as well as isolated side walls. Calculations were done for a range of Reynolds numbers between 10,000 and 16,000, and in four different sorts of serrations with proportion of rib width to hole of serration width (R/W). The results of this research are presented as the coefficient of friction, Nusselt number, heat transfer coefficient and thermal efficiency, four different R/W microchannels. The results of numerical modeling showed that the fluid's convection heat transfer coefficient is increased as the Reynolds number and volume fraction of solid nanoparticle are increased. For R/W=0.5, it was also maximum for all the volume fractions of nanoparticle and different Reynolds numbers in comparison to other similar R/W situations. That's while friction coefficient, pressure drop and pumping power is maximum for serration with R/W=0 compared to other serration ratios which lead to decreased fluid-heat transfer performance.  相似文献   

2.
In the present study, the effect of triangular, rectangular and trapezoidal ribs on the laminar heat transfer of water-Ag nanofluid in a ribbed triangular channel under a constant heat flux was numerically studied using finite volume method. Height and width of ribs have been assumed to be fixed in order to study the effect of different rib forms. Modeling were performed for laminar flow (Re=1, 50 and 100) and nanofluid volume fractions of 0, 2% and 4%. The results indicated that an increase in volume fraction of solid nanoparticle leads to convectional heat transfer coefficient enhancement of the cooling fluid, whereas increasing the Nusselt number results in a loss of friction coefficient and pressure. Also, along with the fluid velocity increment, there will be an optimal proportion between heat and hydrodynamic transfer behavior which optimizes performance evaluation criteria (PEC) behavior. Among all of the investigated rib forms, the rectangular one made the most changes in the streamlines and the triangular form has the best thermal performance evaluation criteria values. For all studied Reynold numbers, heat transfer values are least for rectangular rib from. Therefore, trapezoidal ribs are recommended in high Reynold numbers.  相似文献   

3.
This study has compared the convection heat transfer of Water-based fluid flow with that of Water-Copper oxide (CuO) nanofluid in a sinusoidal channel with a porous medium. The heat flux in the lower and upper walls has been assumed constant, and the flow has been assumed to be two-dimensional, steady, laminar, and incompressible. The governing equations include equations of continuity, momentum, and energy. The assumption of thermal equilibrium has been considered between the porous medium and the fluid. The effects of the parameters, Reynolds number and Darcy number on the thermal performance of the channel, have been investigated. The results of this study show that the presence of a porous medium in a channel, as well as adding nanoparticles to the base fluid, increases the Nusselt number and the convection heat transfer coefficient. Also the results show that As the Reynolds number increases, the temperature gradient increases. In addition, changes in this parameter are greater in the throat of the flow than in convex regions due to changes in the channel geometry. In addition, porous regions reduce the temperature difference, which in turn increases the convective heat transfer coefficient.  相似文献   

4.
In this presentation, the flow and heat transfer inside a microchannel with a triangular section, have been numerically simulated. In this three-dimensional simulation, the flow has been considered turbulent. In order to increase the heat transfer of the channel walls, the semi-truncated and semi-attached ribs have been placed inside the channel and the effect of forms and numbers of ribs has been studied. In this research, the base fluid is Water and the effect of volume fraction of Al2O3 nanoparticles on the amount of heat transfer and physics of flow have been investigated. The presented results are including of the distribution of Nusselt number in the channel, friction coefficient and Performance Evaluation Criterion of each different arrangement. The results indicate that, the ribs affect the physics of flow and their influence is absolutely related to Reynolds number of flow. Also, the investigation of the used semi-truncated and semi-attached ribs in Reynolds number indicates that, although heat transfer increases, but more pressure drop arises. Therefore, in this method, in order to improve the heat transfer from the walls of microchannel on the constant heat flux, using the pump is demanded.  相似文献   

5.
In this study, laminar mixed convection of a water-based nanofluid containing Al2O3 nanoparticles in an inclined copper tube, which is heated at the top half surface, is investigated numerically. A heat conduction mechanism through the tube wall was implemented. Three-dimensional equations using a two-phase mixture model were solved to investigate the hydrodynamic and thermal behaviors of the nanofluid over a wide range of nanoparticle volume fractions. To verify the model, the results were compared with previous works and a good agreement between the results was observed. The effect of nanoparticles diameter on the hydrodynamic and thermal parameters over a wide range of Grashof numbers is presented and discussed for a particle volume fraction and Reynolds number. It is shown that the diameter of nanoparticles affects the particle distribution in the cross section perpendicular to the tube axis, heat transfer coefficient, and shear stress.  相似文献   

6.
In the present work, conjugate heat transfer in a rectangular cavity with a heated moving lid is investigated using the lattice Boltzmann method (LBM). The simulations are performed for incompressible flow, with Reynolds numbers ranging from 100 to 500, thermal diffusivity ratios ranging from 1 to 100, and Prandtl numbers ranging from 0.7 to 7. A uniform heat flux through the top of the lid is assumed. Results show that LBM is suitable for the study of heat transfer in conjugate problems. Effects of the Reynolds number, the Prandtl number and the thermal diffusivity ratio on hydrodynamic and thermal characteristics are investigated and discussed. The streamlines and temperature distribution in flow field, dimensionless temperature and Nusselt number along the hot wall are illustrated. The results indicate that increase of thermal diffusivity yields the removal of a higher quantity of energy from lid and its temperature decreases when increasing the Reynolds and the Prandtl numbers.  相似文献   

7.
In this investigation, the behavior of non-Newtonian nanofluid hydrodynamic and heat transfer are simulated. In this study, we numerically simulated a laminar forced non-Newtonian nanofluid flow containing a 0.5 wt% carboxy methyl cellulose (CMC) solutionin water as the base fluid with alumina at volume fractions of 0.5 and 1.5 as the solid nanoparticle. Numerical solution was modelled in Cartesian coordinate system in a two-dimensional microchannel in Reynolds number range of 10≤Re≤1000. The analyzed geometrical space here was a rectangular part of whose upper and bottom walls was influenced by a constant temperature. The effect of volume fraction of the nanoparticles, Reynolds number and non-Newtonian nanofluids was studied. In this research, the changes pressure drop, the Nusselt number, dimensionless temperature and heat transfer coefficient, caused by the motion of non-Newtonian nanofluids are described. The results indicated that the increase of the volume fraction of the solid nanoparticles and a reduction in the diameter of the nanoparticles would improve heat transfer which is more significant in Reynolds number. The results of the introduced parameters in the form of graphs drawing and for different parameters are compared.  相似文献   

8.
In the present contribution, a numerical treatment is provided to describe unsteady nanofluid flow near a vertical heated wavy surface. A memorable feature of the present work is the investigation of nanofluid flow associated with thermal radiation that acts as a catalyst for heat transfer rates. Likewise, the effectiveness of variable viscosity is examined as it controls fluid flow as well as heat transfer. It is necessary to study heat and mass transfer for complex geometries because predicting heat and mass transfer for irregular surfaces is a topic of fundamental importance, and irregular surfaces frequently appear in many applications, such as flat-plate solar collectors and flat-plate condensers in refrigerators. A simple coordinate transformation from the wavy surface into a flat one is employed. The non-dimensional boundary layer equations that governing both heat transfer and nanofluid flow phenomena along the wavy surface are solved via a powerful numerical approach called the implicit Chebyshev pseudospectral (ICPS) method with Mathematica code. A comparison graph of the current numerical computation and the published data shows a perfect match. Figures depict the effect of various physical parameters on nanofluid velocities, temperature, salt concentration, nanoparticle concentration, skin friction, Sherwood, nanoparticle Sherwood, and Nusselt numbers. According to the numerical results, increasing the variable viscosity parameter value causes a drop in the local skin friction coefficient value and an increase in the steady-state axial nanofluid velocity profile near the wavy surface. Furthermore, as heat radiation is increased, the local Nusselt number decreases but the nanoparticle Sherwood number increases.  相似文献   

9.
A numerical experiment on the simulation of heat transfer from a sphere to a gas flow in a cylindrical channel in the Stokes and transient flow regimes has been described. Radial and axial profiles of the gas temperature and the dependences of drag coefficient Cd of the body and Nusselt number Nu on Reynolds number Re have been calculated and analyzed. The problem of the influence of the early drag crisis for a sphere on its heat transfer to the gas flow has been considered. The estimation of this phenomenon has shown that the early drag crisis of the sphere in a strongly turbulent flow causes a reduction in heat transfer from the sphere to the gas by three to six times (in approximately the same proportion as for its drag coefficient).  相似文献   

10.
 对用于固体激光介质冷却的组合式中间换热器的流动与传热特性进行了实验研究。实验研究结果表明:努塞尔数随雷诺数的增加而增加,总热阻随微通道侧蒸馏水流量的增加而减小,总换热量随微通道侧蒸馏水流量的增加而增加,且换热器的传热系数可以达到1.5×104 W/(m2·K),总热阻小于0.3 K/W,能较好地解决当前固体激光介质冷却系统中间换热器所存在的问题。  相似文献   

11.
This paper reports a numerical analysis of the performance of a counter-flow rectangular shaped microchannel heat exchanger (MCHE) using nanofluids as the working fluids. Finite volume method was used to solve the three-dimensional steady, laminar developing flow and conjugate heat transfer in aluminum MCHE. The nanofluids used were Ag, Al2O3, CuO, SiO2, and TiO2 and the performance was compared with water. The thermal, flow fields and performance of the MCHE were analyzed using different nanofluids, different Reynolds numbers and different nanoparticle concentrations. Temperature profile, heat transfer coefficient, pressure profile, and wall shear stress were obtained from the simulations and the performance was discussed in terms of heat transfer rate, pumping power, effectiveness, and performance index. Results indicated enhanced performance with the usage of nanofluids, and slight penalty in pressure drop. The increase in Reynolds number caused an increase in the heat transfer rate and a decrease in the overall bulk temperature of the cold fluid. The increase in nanoparticle concentration also yielded better performance at the expense of increased pressure drop.  相似文献   

12.
In the present work, heat transfer from a jacketed wall of a scraped-surface heat exchanger (SSHE) is numerically simulated. With the purpose to analyse the hydrodynamic and thermal behaviour under various operating and geometrical conditions, the three-dimensional form of the Navier-Stokes and energy equations are discretized using the controlled-volume method. The hydrodynamic and thermal behaviour can take a variety of possible configurations depending on the number, shape, size of the scrapers and the ratio of rotation to the axial Reynolds numbers. Stagnation points can be easily located, which may be of interest for improving temperature-sensitive processes. The rate of heat transfer is also numerically determined in order to optimize operating and geometrical conditions.  相似文献   

13.
The numerical modeling of natural convection fluid flow and heat transfer in a quarter of gearwheel-shaped heat exchanger is carried out. The heat exchanger is included with internal active square bodies. These bodies have hot and cold temperatures with different thermal arrangements. Three different thermal arrangements are considered and showed with Case A, Case B and Case C. The CuO-water nanofluid is selected as operating fluid. The Koo-Kleinstreuer-Li (KKL) correlation is utilized to estimate the dynamic viscosity and thermal conductivity. In addition, the shapes of nanoparticles are taken account in the analysis. The Rayleigh number, nanoparticle concentration and thermal arrangements of internal active bodies are the governing parameters. The impacts of these parameters on the fluid flow, heat transfer rate, local and total entropy generation and heatlines are studied, comprehensively. The results show that the heat transfer rate enhances with increasing of Rayleigh number and nanoparticle concentration. Moreover, the thermal arrangement of internal active bodies has considerable effect on the heat transfer between heat sources and heat sinks. On the other hand, the total entropy generation enhances and decreases with increasing of Rayleigh number and nanoparticle concentration, respectively.  相似文献   

14.
A tailor-made convective heat transfer test facility is constructed to study the single-phase convective heat transfer of deionized water and 30 vol% and 60 vol% aqua–ethylene glycol in a stainless steel tube of 4 mm in inner diameter and 1 m in length. The heat flux is varied between 1 and 4 kW·m?2 and for mass flux ranging from 160 to 475 kg·m?2 s?1. The experiments were predominantly conducted only for laminar flow regime. Finally, the heat transfer coefficient is recorded and compared with the conventional theories. It is observed that the presence of ethylene glycol in water decreases the heat transfer coefficient by more than 50%, due to the decreased Reynolds number and thermal conductivity of the mixture.  相似文献   

15.
Abstract

Fluids in which nanometer-sized solid particles are suspended are called nanofluids. These fluids can be employed to increase the heat transfer rate in various applications. In this study, the convective heat transfer for Cu/water nanofluid through a circular tube was experimentally investigated. The flow was laminar, and constant wall temperature was used as thermal boundary condition. The Nusselt number of nanofluids for different nanoparticle concentrations, as well as various Peclet numbers, was obtained. Also, the rheological properties of the nanofluid for different volume fractions of nanoparticles were measured and compared with theoretical models. The results show that the heat transfer coefficient is enhanced by increasing the nanoparticle concentrations as well as the Peclet number.  相似文献   

16.
In this article, an experimental investigation is performed to measure the boiling heat transfer coefficient of water flow in a microchannel with a hydraulic diameter of 500 μm. Experimental tests are conducted with heat fluxes ranging from 100 to 400 kW/m2, vapor quality from 0 to 0.2, and mass fluxes of 200, 400, and 600 kg/m2s. Also, this study has modified the liquid Froude number to present a flow pattern transition toward an annular flow. Experimental results show that the flow boiling heat transfer coefficient is not dependent on mass flux and vapor quality but on heat flux to a certain degree. The measured heat transfer coefficient is compared with a few available correlations proposed for macroscales, and it is found that previous correlations have overestimated the flow boiling heat transfer coefficient for the test conditions considered in this work. This article proposes a new correlation model regarding the boiling heat transfer coefficient in mini- and microchannels using boiling number, Reynolds number, and modified Froude number.  相似文献   

17.
Experimental studies on heat transfer and fluid flow of water in a vertical annulus, circulating through a cold leg forming a closed loop thermo-siphon, have been carried out in this article. The annulus has a radius ratio (outer radius to inner radius) of 1.184 and aspect ratio (length to annular gap) equal to 352. The experiments were conducted for constant heat fluxes of 1, 2.5, 5, 7.5, 10, 12.5, and 15 kW/m2. Transient behavior during the heat-up period of the system until the steady-state condition is attained and discussed. Variation in the heat transfer coefficient and Nusselt number along the annulus height represent the developing boundary layer at the entrance and fully developed flow in the remaining length. A large drop in the differential pressure is experienced when the liquid is circulated through the flow meters, which restrict the flow due to their very small passages. Flow restriction causes mass accumulation and rise of pressure at the exit of the annulus. It also causes a decrease in liquid head in the cooling leg. An increase in the heat flux leads to an increase in the heat transfer coefficient and Nusselt number. As a result of the data analysis correlations for the average Nusselt number, Reynolds number and circulation rate have been developed in terms of the heat flux.  相似文献   

18.
Heat transfer performances of viscoelastic fluid, water-based Cu nanofluid, and viscoelastic-fluid-based Cu nanofluid flows in a circular pipe at a Peclet number of 40,000 were experimentally studied. It indicates that the viscoelastic fluid turbulent flow gives great heat transfer reduction, while the water-based Cu nanofluid flow shows significant heat transfer enhancement. The viscoelastic-fluid-based Cu nanofluid also exhibits heat transfer enhancement as compared with viscoelastic base fluid flow. The effects of nanoparticle volume fraction, mass concentration of viscoelastic base fluid, and temperature on local convective heat transfer coefficient and possible heat transfer enhancement mechanisms of nanofluid flows were discussed.  相似文献   

19.
In this article, thermal and hydrodynamic performances of a miniature tangential heat sink are investigated experimentally by using Al2O3–H2O and TiO2–H2O nanofluids. The effects of flow rate and volume concentration on the thermal performance have been investigated for the Reynolds number range of 210 to 1,100. Experimental results show that the average convective heat transfer coefficient increases 14 and 11% and the bottom temperature of the heat sink decreases 2.2°C and 1.6°C by using Al2O3–H2O and TiO2–H2O nanofluid instead of pure distilled water, respectively.  相似文献   

20.
This paper investigates combined heat and mass transfer by mixed magneto-convective flow of an electrically conducting flow along a moving radiating vertical flat plate with hydrodynamic slip and thermal convective boundary conditions. The governing transport equations are converted into a system of coupled nonlinear ordinary differential equations with prescribed boundary conditions using similarity variables developed by Lie group theory. The transformed nondimensional boundary value problem is then solved numerically with MAPLE13 quadrature. Excellent correlation with previous nonmagnetic, no-slip studies is achieved. Surface shear stress function and local Nusselt number (heat transfer gradient at the wall) are increased with Richardson number, whereas local Sherwood number is found to initially decrease then subsequently increase. The “thermally thick” scenario (Biot number > 0.1) is investigated and increasing Biot number is observed to enhance shear stress function (skin friction), local Nusselt number, and local Sherwood number. Increasing thermal radiation flux increases thermal boundary layer thickness as does increasing the magnetic field effect. Increasing hydrodynamic slip parameter reduces skin friction but enhances local Nusselt and Sherwood numbers. The study has applications in high-temperature polymeric synthesis and magnetic field flow control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号