首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liu H  Sun X  Pei Y  Yao F  Jiang Y 《Optics letters》2011,36(13):2414-2416
We numerically study the coupling of magnetic plasmon polaritons (MPPs) with Bloch surface waves (BSWs) in a system composed of a one-dimensional gold nanowire pair array lying on a periodic dielectric multilayer. At an appropriate period of the dielectric multilayer, maximum coupling takes place between the MPP and the BSW. It results in two branches of hybridized MPPs with a Rabi-type splitting as large as 125 meV. The maximal magnetic field intensity achieved in the center of nanowire pairs is enhanced greatly and an enhancement factor >1.5 is observed compared with that achieved by a nanowire pair array lying directly on a substrate. This has potential applications in nonlinear optics and near-field enhanced spectroscopy.  相似文献   

2.
《Current Applied Physics》2020,20(7):877-882
The paper is devoted to optical testing of mid-infrared Ge/Si photodetectors obtained by stacking of self-assembled Ge quantum dots in multilayer structures, which are near-field coupled to the adjacent nanoplasmonic arrays of subwavelength holes in metallic films. It is shown that photocurrent and near-field spectra consist of several sets of peaks, which are attributted to surface plasmon waves, localized surface plasmon modes or diffractive Rayleigh anomaly depending on the hole diameter and the angle of incidence θ. We find that for small holes the greatest contribution to the photocurrent enhancement is due to the excitation of the surface plasmon-polariton waves for all θ. As the hole diameter is increased and becomes comparable with the array periodicity, the normal-incident photoresponse improvement is provided by the Rayleigh anomaly. With the increase of incident angle, the photocurrent enhancement is supposed to arise from coupling of the localized shape resonance and propagating plasmon modes.  相似文献   

3.
We investigate the optical absorption spectrum of a periodic array of silver nanoparticle dimer on a thin silver film using multiple-scattering formalism. Surface plasmon polariton mediated from silver nanoparticle dimer array is excited and enhanced by about four times compared with that from monomer array. This enhancement results from the coupling between the two nanoparticles’ plasmons of symmetry mode and anti-symmetry mode. We also illustrate the distance-dependent nanoparticle plasmonic coupling modes based on the polarized charge distribution in dimer geometry. The proposed silver nanoparticle dimer array can be used to enhance surface spectroscopy.  相似文献   

4.
A mechanism of surface flattening is proposed based on our original mathematical model of surface development by introducing a protrusion-selective etching process which has been demonstrated by the optical near-field assisted chemical etching of glass substrate. We study various mechanisms of surface development due to etching processes depending on the local curvature of substrate and explain that the nature of optical near-field showing the stronger field–matter coupling and associated field enhancement near a sharper protrusion is essential for the flattening property.  相似文献   

5.
We theoretically analyze the optical near-field response of a semiconductor macroatom induced by local monolayer fluctuations in the thickness of a semiconductor quantum well, where the large active volume results in a strong enhancement of the light-matter coupling. We find that in the near-field regime bright and dark excitonic states become mixed, opening new channels for the coupling to the electromagnetic field. As a consequence, ultranarrow luminescence lines appear in the simulated two-photon experiments, corresponding to very long lived excitonic states, which undergo Stark shift and Rabi splitting at relatively small field intensities.  相似文献   

6.
Widely tunable terahertz (THz)-wave generation using difference frequency generation (DFG) in an organic N-benzyl-2-methyl-4-nitroaniline (BNA) crystal was demonstrated. To our knowledge, this is the first report of THz-wave generation by BNA DFG. Large, high-quality single crystals of BNA (phi 8 mm x 30 mm) were grown using the vertical Bridgman method. The nonlinear optical (NLO) coefficient d(33) of the BNA crystal is approximately 234 pm/V, which is the largest value reported for any yellow NLO material. The collinear phase-matching condition of the type-0 configuration is satisfied using a 0.7-1 microm band pump wavelength. We generated THz waves using an organic BNA crystal; the generation range is 0.1-15 THz.  相似文献   

7.
余本海  张东玲  李盈傧  汤清彬 《中国物理 B》2013,22(1):14212-014212
The optical nonlinearities of an Ag nanoparticle array are investigated by performing the Z-scan measurements at the selected wavelengths (400, 600, 650, and 800 nm). The nonlinear refraction index in the resonant region (around 400 nm) exhibits a significant enhancement by two orders compared with that in the off-resonant region (around 800 nm)), and exhibits an sign alternation of the resonant nonlinear absorption, which results in a negligible nonlinear absorption at a certain excitation intensity. Moreover, a low degree of nonlinear absorption was measured at the edges of the resonant region (600 and 650 nm), which is attributed to the competition of the saturated absorption and the two-photon absorption processes.  相似文献   

8.
The optical nonlinearities of an Ag nanoparticle array are investigated by performing Z-scan measurements at the selected wavelengths (400, 600, 650, and 800 nm). The nonlinear refraction index in the resonant region (around 400 nm) exhibits a significant enhancement by two orders compared with that in the off-resonant region (around 800 nm)), and exhibits an sign alternation of the resonant nonlinear absorption, which results in a negligible nonlinear absorption at a certain excitation intensity. Moreover, a low degree of nonlinear absorption was measured at the edges of the resonant region (600 and 650 nm), which is attributed to the competition of the saturated absorption and the two-photon absorption processes.  相似文献   

9.
We report on the detection of the optical near field of a 1D gold particle array by using an apertureless scanning near-field optical microscope. The strong near-field confinement measured above the grating proves unambiguously the near-field origin of the detected optical signal. Comparing the experiment with theory leads us to assign the optical near field to the first diffracted order of the grating, which is evanescent.  相似文献   

10.
With nanosecond scale at a 532 nm wavelength, we firstly measured the nonlinear optical absorption and refraction coefficients of Pd(po)2 complex by using Z-scan technique, here Hpo=1-hydioxy-2-pyridone. We describe an empirical expression for the case when nonlinear refraction is accompanied by nonlinear absorption to separately evaluate the nonlinear refraction and the nonlinear absorption by performing straightforward measurements with the aperture removed. The nonlinear optical response of Pd(po)2 was determined by the linear decreasing irradiance-dependence. The nonlinear absorption originates from the near resonant two-photon absorption while the mechanism of the nonlinear refraction is the near resonant two-photon absorption transition enhancement. The linear increasing dependences of the optical nonlinearities on the incident irradiance arise from the population redistribution due to the near resonant two-photon absorption.  相似文献   

11.
The convolution between spatial modes of two different parts of an optical system can convert evanescent waves into propagating waves. This principle is applied to different optical systems for analyzing various effects in transmission enhancements experiments. We discuss here the differences between the present principle which is related to broadening of resonances and the near-field optical microscopy based on a tunneling effect by a tip detector. The present analysis is applied in particular to two systems: a) transmission enhancement in one slit by coupling the transmitted radiation with transversal Fabry–Pérot electromagnetic (EM) modes, and b) transmission enhancement by coupling between a metallic film with arrays of holes and surface plasmons (SP). The present approach gives more information on transmission enhancement phenomena than that obtained by conventional treatments and can also solve certain disagreements between different theories. The differences between the present process of converting evanescent waves into propagating waves, and that related to the new development of getting a super-resolution by an hyperlens are discussed. PACS 41.20.Jb; 73.20.Mf; 42.79.Dj  相似文献   

12.
We consider a nonlinear optical system in general, and a broad aperture laser, in particular, in a resonator where the diffraction coefficients are of opposite signs along two transverse directions. The system is described by the hyperbolic Maxwell-Bloch equations, where the spatial coupling is provided by the D'Alambert operator rather than by the Laplace operator. We show that this system supports hyperbolic transverse patterns residing on hyperbolas in far-field domain, and consisting of stretched vortices in near-field domain.  相似文献   

13.
We describe the optical power enhancement on the surface of the 2D (two-dimensional) periodic arrays of convex and concave gold nanostructures for comparing the characteristics of the nanostructures for surface-enhanced Raman spectroscopy (SERS) templates. The optical power enhancement is due to the surface plasmon polaritons, which is calculated by the Finite-Difference Time-Domain (FDTD) method at commercially-available 532 nm pump light. A periodic array of closely-packed gold particles is defined as convex nanostructure, while a periodic array of hemispherical holes, or voids, on gold substrate is defined as concave nanostructure. The peak power enhancement factor, the average power enhancement factor and the activity rate of each structure were compared. The convex nanostructures show a strong enhancement factor in localized hotspots, while the concave nanostructures show not only the peak power enhancement factor comparable to that of convex nanostructures, but also higher spatially-averaged power enhancement factors and activity rates than those observed on the convex nanostructures, meaning that the highly enhanced near-field zone distributes densely on the substrate. We also revealed the dependence of the void diameter on the inter-void distance for the power enhancement in the concave nanostructures system, providing a guideline for the fabrication of the efficient SERS template, which shows a strong power enhancement factor with a high area density.  相似文献   

14.
We propose a cascaded plasmonic nanorod antenna for large broadband electric near-field enhancement. The structure has one big gold nanorod on each side of a small two-wire antenna which consists of two small gold nanorods. For each small nanorod, the enhanced and broadened optical response can be obtained due to the efficient energy transfer from its adjacent big nanorod through strong plasmonic near-field coupling. Thus, the electric field intensity of the cascaded antenna is significantly larger and broader than that of the individual small two-wire antenna. The resonant position, field intensity enhancement, and spectral width of the cascaded antenna are highly tunable by varying the geometry of the system. The quantum efficiency of the cascaded antenna is also greatly enhanced compared with that of the small antenna. Our results are important for the applications in field-enhanced spectroscopy.  相似文献   

15.
金属纳米线阵列的光学非线性增强因子的分析和计算   总被引:2,自引:2,他引:0  
王敬  熊贵光 《光子学报》2004,33(2):233-236
以平行排列的无限长金属圆柱体为模型,基于金属颗粒与电磁场相互作用的平均场理论和非线性光学的基本理论,计算了局域场增强和表面等离子体共振引起金属纳米线阵列的光学非线性增强,通过理论计算得到了银纳米线阵列的局域场增强因子和有效三阶非线性极化率的增强因子,并分析了不同参量和非参量非线性光学效应总的场增强因子.  相似文献   

16.
Nonlinear optical limiting materials have attracted much research interest in recent years. Carbon nanoparticles suspended in liquids show a strong nonlinear optical limiting function. It is important to investigate the nonlinear optical limiting process of carbon nanoparticles for further improving their nonlinear optical limiting performance. In this study, carbon nanoparticles were prepared by laser ablation of a carbon target in tetrahydrofuran (THF). Optical limiting properties of the samples were studied with 532-nm laser light, which is in the most sensitive wavelength band for human eyes. The shape of the laser pulse plays an important role for initializing the nonlinear optical limiting effect. Time-resolved analysis of laser pulses discovered 3 fluence stages of optical limiting. Theoretical simulation indicates that the optical limiting is initialized by a near-field optical enhancement effect.  相似文献   

17.
Simulation of detecting photoelectrons using multi-level multi-electron (MLME) finite-difference time-domain (FDTD) method with an application to near-field subwavelength imaging based on semiconductor nanophotodetector (NPD) array is reported. The photocurrents from the photodiode pixels are obtained to explore the resolution of this novel NPD device for subwavelength imaging. One limiting factor of the NPD device is the optical power coupling between adjacent detector pixels. We investigate such power coupling in the presence of absorbing media as well as the spatial distributions of the electric field and photoelectron density using the MLME FDTD simulation. Our results show that the detection resolution is about one tenth of the operating wavelength, which is comparable to that of a near-field scanning optical microscope based on metal clad tapered fiber.  相似文献   

18.
古英  余建华 《中国物理》2002,11(6):601-607
We investigate the linear and nonlinear optical responses of dilute anisotropic networks using Green's function formalism [Gu Y et al 1999 Phys. Rev. B 59 12847]. For different applied fields, numerical calculations indicate that a large third-order nonlinear enhancement and a broad infrared absorption arise from the geometric anisotropy. We also show the overlap and separation between the absorption peak and nonlinear enhancement peak when the applied field is parallel and perpendicular to the anisotropy, respectively. The results can be understood in terms of the inverse participation ratios with q=2 and the spectral distribution of optical responses.  相似文献   

19.
20.
We have developed a novel probe with a nanometric metallized protrusion extending through a subwavelength aperture to increase optical near-field excitation and collection efficiencies. The apex diameter of the fabricated metallized protrusion was 35 nm. The Intensity distribution of the optical near-field at the apex of the probe was measured by scanning another probe across the apex, and it was observed that strong optical near-field was generated at the apex of the metallized protrusion. The width of the intensity distribution was 150 nm including instrumental resolution. Probes with spherical and ellipsoidal metallized protrusion were also fabricated, by which enhancement of the optical near-field is expected due to localized plasmon excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号