首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The growth of heterogeneous water droplets containing nanoparticles is studied in two laminar flow diffusion chambers of different designs. It is shown that the efficiency of heterogeneous condensation is, to a substantial extent, governed by the processes of heat and mass transfer inside a chamber condenser. Integral parameter C(R) representing the probability that a nanoparticle with radius R is covered with a condensate film in a laminar flow chamber is calculated. It is established that, in air-water vapor mixtures, the radius of heterogeneous water droplets may amount to several micrometers and efficient condensation begins on spherical nanoparticles when their radii exceed 5 nm.  相似文献   

2.
The dynamics of the three-phase contact line for water and ethanol is experimentally investigated using substrates of various hydrophobicities. Different evolutions of the droplet profile (contact line, R, and contact angle, θ) are found to be dependent on the hydrophobicity of the substrate. A simple theoretical approach based on the unbalanced Young force is used to explain the depinning of the contact line on hydrophilic surfaces or the monotonic slip on hydrophobic substrates. The second part of the article involves the addition of different quantities of titanium oxide nanoparticles to water, and a comparison of the evaporative behavior of these novel fluids with the base liquid (water) on substrates varying in hydrophobicity (i.e., silicon, Cytop, and PTFE) is presented. The observed stick-slip behavior is found to be dependent on the nanoparticle concentration. The evaporation rate is closely related to the dynamics of the contact line. These findings may have an important impact when considering the evaporation of droplets on different substrates and/or those containing nanoparticles.  相似文献   

3.
When the water-in-oil (w/o) microemulsion droplets including the Co(III)-pyridylazo complex as the photo-absorber were irradiated with a continuous-wave Ar(+) ion laser (514.5 nm), we have observed unexpected phenomenon that photo-absorbing microemulsion droplets in water repeated the expansion and the sudden contraction during the laser photophoretic migration. The period of the expansion-contraction cycle was inversely proportional to both the concentration of the complex and the irradiated laser power and was independent of the initial size of the droplet. The mechanism of the periodic motion of the droplet was investigated by local temperature measurement and Raman microscope spectroscopy. It was suggested that the first step was the phase separation of the bicontinuous microemulsion droplet into the normal w/o microemulsion outer phase and the aqueous inner phase in the droplet, which was caused by the laser-induced temperature gradient inside the droplet. Subsequently, an expansion of the inner aqueous phase was induced by the percolation of the external water by thermo-osmosis, which was caused by the laser-induced temperature gradient between the inside and the outside of the microemulsion liquid membrane of the droplet. When the liquid membrane became thinner to a critical thickness, the inner aqueous phase was released and the droplet shrank into the original size. The proposed mechanism can give an account of the unique cyclical motion.  相似文献   

4.
An interconnected Au nanoparticle arrangement is obtained by electrodeposition from Au(III) soluble complexes within the pore system of block-copolymer templated mesoporous titania films. The resulting Au@TiO2 nanocomposites (5 nm Au particles, 5.5 nm amorphous titania walls) have the electrochemical behavior of a gold electrode of high surface area. The attenuation of Au surface plasmon due to -OH electroadsorption and the existence of mixed localized states in these Au@TiO2 nanocomposites are observed by in situ spectroelectrochemistry.  相似文献   

5.
Using a microfluidic flow-focusing device, monodisperse water droplets in oil were generated and their interface populated by either 1 μm or 500 nm amine modified silica particles suspended in the water phase. The deformation and breakup of these Pickering droplets were studied in both pure extensional flow and combined extensional and shear flow at various capillary numbers using a microfluidic hyperbolic contraction. The shear resulted from droplet confinement and increased with droplet size and position along the hyperbolic contraction. Droplet deformation was found to increase with increasing confinement and capillary number. At low confinements and low capillary numbers, the droplet deformation followed the predictions of theory. For fully confined droplets, where the interface was populated by 1 μm silica particles, the droplet deformation increased precipitously and two tails were observed to form at the rear of the droplet. These tails were similar to those seen for surfactant covered droplets. At a critical capillary number, daughter droplets were observed to stream from these tails. Due to the elasticity of the particle-laden interface, these drops did not return to a spherical shape, but were observed to buckle. Although increases in droplet deformation were observed, no tail streaming occurred for the 500 nm silica particle covered droplets over the range of capillary numbers studied.  相似文献   

6.
We propose a statistical dynamical theory for the violation of the hydrodynamic Stokes-Einstein (SE) diffusion law for a spherical nanoparticle in entangled and unentangled polymer melts based on a combination of mode coupling, Brownian motion, and polymer physics ideas. The non-hydrodynamic friction coefficient is related to microscopic equilibrium structure and the length-scale-dependent polymer melt collective density fluctuation relaxation time. When local packing correlations are neglected, analytic scaling laws (with numerical prefactors) in various regimes are derived for the non-hydrodynamic diffusivity as a function of particle size, polymer radius-of-gyration, tube diameter, degree of entanglement, melt density, and temperature. Entanglement effects are the origin of large SE violations (orders of magnitude mobility enhancement) which smoothly increase as the ratio of particle radius to tube diameter decreases. Various crossover conditions for the recovery of the SE law are derived, which are qualitatively distinct for unentangled and entangled melts. The dynamical influence of packing correlations due to both repulsive and interfacial attractive forces is investigated. A central finding is that melt packing fraction, temperature, and interfacial attraction strength all influence the SE violation in qualitatively different directions depending on whether the polymers are entangled or not. Entangled systems exhibit seemingly anomalous trends as a function of these variables as a consequence of the non-diffusive nature of collective density fluctuation relaxation and the different response of polymer-particle structural correlations to adsorption on the mesoscopic entanglement length scale. The theory is in surprisingly good agreement with recent melt experiments, and new parametric studies are suggested.  相似文献   

7.
Mode-coupling theory is employed to study diffusion of nanoparticles in polymer melts and solutions. Theoretical results are directly compared with molecular dynamics simulation data for a similar model. The theory correctly reproduces the effects of the nanoparticle size, mass, particle-polymer interaction strength, and polymer chain length on the nanoparticle diffusion coefficient. In accord with earlier experimental, simulation, and theoretical work, it is found that when the polymer radius of gyration exceeds the nanoparticle radius, the Stokes-Einstein relation underestimates the particle diffusion coefficient by as much as an order of magnitude. Within the mode-coupling theory framework, a microscopic interpretation of this phenomenon is given, whereby the total diffusion coefficient is decomposed into microscopic and hydrodynamic contributions, with the former dominant in the small particle limit, and the latter dominant in the large particle limit. This interpretation is in agreement with previous mode-coupling theory studies of anomalous diffusion of solutes in simple dense fluids.  相似文献   

8.
Multifunctionality of nanotubes (NTs) is essential in biomedical and biotechnological applications, such as drug/gene delivery, bioseparation, and single-molecule detection. Each functionality should be located at optimal positions, depending on their roles such as targeting, tracking, and transporting. This enables avoidance of possible malfunctions or interference caused by having randomly distributed multiple groups (e.g., hydrophobic and hydrophilic) in the same space. In the aspect of multifunctionality, however, a general selective partial functionalization method of NT inner surfaces still remains a challenge. For this reason, we investigated a selective partial functionalization method of NTs using controlled gold nanoparticle (Au NP) diffusion in nanotubes and the preparation method of Au-capped silica nanotubes. Silica nanotubes (SNTs) were prepared using template sol-gel synthesis, and the inside of SNT was selectively modified with (3-trimethoxysilylpropyl) diethylenetriamine (DETA-silane). Au NPs of 2-nm size were then incubated with SNTs with DETA layer inside. Spontaneous diffusion of negatively charged Au NPs from bulk into the positively charged nanochannels of SNTs led trapped Au NPs onto the inner surface of SNTs. The degree of functionalization was controlled by the channel diameter, Au NP concentration, and solvent type. These SNTs partially modified with Au NPs were then used for localized selective chemical functionalization of SNTs. This was accomplished by the reaction between thionylated Au NPs trapped on the inside of SNTs and Alexa555-maleimide. Au-capped SNTs were prepared from SNTs with Au NPs inside by seed-mediated gold growth.  相似文献   

9.
Heterogeneous materials, such as biological tissues, foodstuffs, and rocks, contain a range of microscopic environments where the molecular constituents often have different NMR relaxation time constants and self-diffusion coefficients. Multidimensional correlation methods have greatly improved the possibility for separating and assigning the NMR responses from distinct environments, thereby allowing for a more complete characterization of structure, dynamics, and molecular exchange in heterogeneous materials. Here, we review recent developments in experimental methodology and data analysis approaches.  相似文献   

10.
There is growing evidence that a metastable phase of ice, cubic ice, plays an important role in the Earth's troposphere and stratosphere. Cubic ice may also be important in diverse fields such as cryobiology and planetary sciences. Using X-ray diffraction, we studied the formation of cubic ice in pure water droplets suspended in an oil matrix as a function of droplet size. The results show that droplets of volume median diameter 5.6 microm froze dominantly to cubic ice with stacking faults. These results support previous suggestions that cubic ice is the crystalline phase that nucleates when pure water droplets freeze homogeneously at approximately 235 K. It is also shown that as the size of the water droplets increased from 5.6 to 17.0 microm, the formation of the stable phase of ice, hexagonal ice, was favoured. This size dependence can be rationalised with heat transfer calculations. We also investigated the stability of cubic ice that forms in water droplets suspended in an oil matrix. We observe cubic ice up to 243 K, much higher in temperature than observed in many previous studies. This result adds to the existing literature that shows bulk ice I(c) can persist up to approximately 240 K. The transformation of cubic ice to hexagonal ice also showed a complex time and temperature dependence, proceeding rapidly at first and then slowing down and coming to a halt. These combined results help explain why cubic ice forms in some experiments described in the literature and not others.  相似文献   

11.
Summary In this study a cloud model describing an ascending, adiabatically closed parcel was used to show the influence of the quality of data about the chemical composition of aerosol particles on the model results. The input data for the model were based on measured aerosol chemical compositions which were compiled from literature data. Model results influenced by incomplete chemical characterization of the particles are the radii of the large droplets, which depend on the activation parameter, and the pH-values of the droplets, which depend on the ionic balance of the particles.  相似文献   

12.
The heterogeneous uptake of the 8-2 fluorotelomer alcohol, F(CF2)8CH2CH2OH, on liquid water surfaces over the temperature range 256-273 K and on 1-octanol surfaces over the temperature range 264-295 K has been investigated with a droplet train flow reactor. The uptake coefficient on water droplets is zero within the error of the measurement (+/-0.01) and is independent of droplet temperature. In contrast, significant uptake onto 1-octanol is observed. Measured uptake coefficients for 1-octanol showed a negative temperature dependence, varying from 0.034 +/- 0.005 (1sigma) at 295 K to 0.103 +/- 0.009 at 264 K. The measured uptake coefficients on 1-octanol were independent of gas-liquid contact time, for typical contact times varying between 3 and 15 ms, and independent of the 8-2 fluorotelomer alcohol gas-phase concentration, indicating that the uptake coefficients are equivalent to mass accommodation coefficients. The uptake coefficients on 1-octanol were also independent of relative humidity. These results show that the uptake of FTOHs on or into the aqueous component of cloud/fog droplets or aqueous aerosol particles is not likely to be an important atmospheric sink for these compounds. In these experiments, 1-octanol was used as a model compound for organic-containing atmospheric particles. The larger uptake coefficient measured for 1-octanol surfaces indicates that FTOH partitioning to organic-containing cloud/fog droplets and aerosol particles may be an atmospheric loss mechanism.  相似文献   

13.
The evaporation coefficients of water in air and nitrogen were found as a function of temperature by studying the evaporation of a pure water droplet. The droplet was levitated in an electrodynamic trap placed in a climatic chamber maintaining atmospheric pressure. Droplet radius evolution and evaporation dynamics were studied with high precision by analyzing the angle-resolved light scattering Mie interference patterns. A model of quasi-stationary droplet evolution accounting for the kinetic effects near the droplet surface was applied. In particular, the effect of thermal effusion (a short-range analogue of thermal diffusion) was discussed and accounted for. The evaporation coefficient alpha in air and in nitrogen were found to be equal. The alpha was found to decrease from approximately 0.18 to approximately 0.13 for the temperature range from 273.1 to 293.1 K and follow the trend given by the Arrhenius formula. The agreement with condensation coefficient values obtained with an essentially different method by Li et al. [Li, Y.; Davidovits, P.; Shi, Q.; Jayne, J.; Kolb, C.; Worsnop, D. J. Phys. Chem. A. 2001, 105, 10627] was found to be excellent. The comparison of experimental conditions used in both methods revealed no dependence of the evaporation/condensation coefficient on the droplet charge nor the ambient gas pressure within the experimental parameters range. The average value of the thermal accommodation coefficient over the same temperature range was found to be 1 +/- 0.05.  相似文献   

14.
15.
The kinetics and mechanism of the water incorporation in binary perovskite (elpasolite) Ba4Ca2Nb2O11 are studied in the temperature interval 300–500°C at aH2O = 1 × 10?3 to 2.2 × 10?2. The product of hydration at these temperatures and values of aH2O is a solid solution of the composition Ba4Ca2Nb2O11·xH2O (x < 0.5). The process of interaction with water vapor is shown to be limited by the intraphase diffusion of hydrogen-and oxygen-containing species that enter the composition of H2O. Coefficients of chemical diffusion of water $\tilde D_{H_2 O} $ are estimated from relaxation dependences of weight upon a stage-by-stage change of humidity loga H2O = ?3.0 → ?2.5 → ?2.0 → ?1.6. It is established that the coefficient of chemical diffusion of water for Ba4Ca2Nb2O11·xH2O at 0.1 < x < 0.5 insignificantly increases with increasing x. The chemical diffusion of water for the composition Ba4Ca2Nb2O11·0.35H2O is characterized by an activation energy of 0.38 eV. Given joint transfer of O2? and H+, the last value suggests that protons may exert an influence on the rate and energy of migration of oxygen. Possible forms of proton-containing species in the case of migration in experiments on chemical diffusion are discussed.  相似文献   

16.
Quasielastic neutron scattering (QENS) spectra of water-filled MCM-41 samples (pore diameters: 21.4 and 28.4 Angstrom) were measured over the temperature range 238-298 K and the momentum transfer range 0.31-0.99 A(-1) to investigate the dynamics of confined water molecules. The spectra, which consist mainly of contributions from the translational diffusion of water molecules, were analyzed by using the Lorentzian and the stretched exponential functions. Comparison of the fits indicated that the latter analysis is more reliable than the former one. The fraction of immobile water molecules located in the vicinity of the pore walls, which give an elastic component, was found to be 0.044-0.061 in both pores. The stretch exponent beta was determined as 0.66-0.80. It was shown that the translational diffusion of water molecules in the pores is decelerated by confinement and that the deceleration becomes marked with a decrease in pore size. The ratios of the translational diffusion coefficient D(T) of confined water to that of bulk water at room temperature were within a range of 0.47-0.63.  相似文献   

17.
18.
Physical and chemical modifications were made on the surface of the aluminum sheet to change the surface properties and superhydrophobic–hydrophilic wettability gradient surface was made on the perspex surface by using microstructure-pattering technique and self-assembled-monolayer method. By using high-speed video camera system and optical tensiometer, this paper discusses the influence of special surfaces with different wettability on spreading and motion of water, oil, and W/O emulsion droplets both experimentally and theoretically. In addition, the paper also discusses the influence of the superhydrophobic–hydrophilic wettability gradient on fluidity of W/O emulsion droplets and the coalescence process of droplets. The results showed that the contact angle of W/O emulsion droplets on the modified surfaces was related to the water and oil distribution at the three-phase line. On the wettability gradient surface, the droplet moved spontaneously when the droplet was located at the junction of the gradient. A quasi-steady theoretical model was used to analyze the driving and resistant forces acting on a droplet to improve the understanding of the self-transport behavior of the droplets.  相似文献   

19.
Isothermal homogeneous nucleation rates of 1-butanol were measured both in a thermal diffusion cloud chamber and in a laminar flow diffusion chamber built recently at the Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Prague, Czech Republic. The chosen system 1-butanol-helium can be studied reasonably well in both devices, in the overlapping range of temperatures. The results were compared with those found in the literature and those measured by Lihavainen in a laminar flow diffusion chamber of a similar design. The same isotherms measured with the thermal diffusion cloud chamber occur at highest saturation ratios of the three devices. Isotherms measured with the two laminar flow diffusion chambers are reasonably close together; the measurements by Lihavainen occur at lowest saturation ratios. The temperature dependences observed were similar in all three devices. The molecular content of critical clusters was calculated using the nucleation theorem and compared with the Kelvin equation. Both laminar flow diffusion chambers provided very similar sizes slightly above the Kelvin equation, whereas the thermal diffusion cloud chamber suggests critical cluster sizes significantly smaller. The results found elsewhere in the literature were in reasonable agreement with our results.  相似文献   

20.
The rate of water sorption at 25°C. has been determined for a number of polyacetal films differing in structure, density, and orientation induced by extrusion. The equilibrium water uptake was found to be a linear function of density only; no other effect of structure or orientation was detectable. The extrapolated density for zero sorption was 1.51 g./cc., not far from the theoretical crystalline density. The diffusivity of water in unoriented films rose with decreasing density; for linear copolymer, the trend was parallel to that of the area under the dynamic mechanical loss peak associated with long-range chain motions in the disordered regions (β-transition). Less pronounced effects of molecular weight and long chain branching on diffusivity were also noted. Films crystallized while an extruded melt was still oriented showed considerable increases in water diffusivity, but no significant changes in the apparent activation energies of permeation (about 6.6 kcal./mole) or diffusion (about 11.5 kcal./mole). On annealing these films, the diffusivity remained almost constant while the sorption coefficient and retraction on remelting decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号