共查询到17条相似文献,搜索用时 62 毫秒
1.
报道了4 MV激光触发多级多通道开关的结构设计和初步的实验结果及分析。该开关采用轴向聚焦触发方式,设计为匀场结构,采用场调整环与匀压环调整开关间隙电场分布,电极-绝缘子序列采用堆栈结构替代榫接结构,独立定位、紧固。实验结果表明:4 MV激光触发多级多通道开关的自击穿电压偏差小于5%,自击穿电压与工作气压呈良好的线性关系;触发延迟时间约25 ns,极差小于±2.5 ns,抖动1.5 ns;等工作电压-气压比条件下,随着气压和工作电压的上升触发延迟时间及其抖动趋向下降。 相似文献
2.
3.
4.
激光触发多级多通道开关是多路并联高功率脉冲装置的首选同步开关,对系统中各路脉冲功率系统的运行时序进行精确控制,以实现脉冲功率的有效叠加。由24个模块组成的10MAz—pinch实验装置(PTS)采用4MV激光触发多级多通道开关作为其系统中的主同步开关。该开关由~级激光触发间隙和21级自击穿间隙组成,采用匀场结构设计(即其所有间隙均为轴对称均匀场分布间隙),触发间隙电极设计为不锈钢Bruce电极;过压自击穿间隙电极设计为不锈钢冰壶型电极。采用场调整环强制调整开关区内的空间电场分布。 相似文献
5.
研究了激光触发多级多通道开关的触发延迟时间及其抖动与激光脉冲能量等实验参量的依赖关系,建立了零维数值模拟模型对实验现象进行了理论解释。实验结果表明:触发延迟时间及其抖动随激光脉冲能量、工作电压、气压上升呈下降趋势;随SF6-N2混合气中SF6体积百分含量上升呈上升趋势。欠压比大于等于90%时200kV原理型激光触发多级多通道开关触发延迟时间抖动小于1ns。 相似文献
6.
7.
8.
9.
研制成功了触发延迟时间抖动小于1ns的200kV原理型激光触发多级多通道开关,该开关由Bruce剖面型不锈钢电极构成的激光触发间隙和5-9级冰壶型不锈钢电极构成的等间距环形过压自击穿隙组成。采用了四倍频Nd:YAG激光器为触发源,研究了开关触发延迟时间及其抖动与激光脉冲能量、工作电压、气体种类及气体压强等实验参数之间的依赖关系。 相似文献
10.
11.
12.
通过短接电极间隙,开展了3 MV多级多通道缩比开关不同间隙级数和单独触发间隙的自击穿特性分析,结果表明:自击穿电压随电极间隙距离不是线性增加,与Bradley经验公式存在差距。采用Ansoft软件模拟了实验开关不同级数的电场分布,得到不同级数开关电场分布的不均匀系数。结合缩比开关自击穿实验数据、Bradley经验公式和电场分布不均匀系数,在Bradley经验公式中加入开关作用时间因素和电场不均匀系数,得到一个Bradley外推公式,能较好地反应多级多通道气体开关的自击穿电压,使3 MV实际开关自击穿电压理论值与实验值误差减小到5%。 相似文献
13.
14.
通过短接电极间隙,开展了3 MV多级多通道缩比开关不同间隙级数和单独触发间隙的自击穿特性分析,结果表明:自击穿电压随电极间隙距离不是线性增加,与Bradley经验公式存在差距。采用Ansoft软件模拟了实验开关不同级数的电场分布,得到不同级数开关电场分布的不均匀系数。结合缩比开关自击穿实验数据、Bradley经验公式和电场分布不均匀系数,在Bradley经验公式中加入开关作用时间因素和电场不均匀系数,得到一个Bradley外推公式,能较好地反应多级多通道气体开关的自击穿电压,使3 MV实际开关自击穿电压理论值与实验值误差减小到5%。 相似文献
15.
为进行PTS装置单路样机激光触发开关的调试,设计安装了相应的电压电流探头。通过对比分析了探头测量结果,解释了开关出口D-dot电压探头波形畸变的原因,并运算得到了正确的波形。B-dot探头得到了与模拟结果符合的电流微分信号和电流信号。实验结果表明: D-dot探头适合MV量级的高电压脉冲测量,但当该探头工作在开关区时,设计中需要对比探头与被测电极以及其它电极的结构电容,只有满足结构电容远大于与其它高压电极的电容时,才能获得较真实的信号。如果结构设计中难以满足该要求,可以采用软件处理方法得到正确的波形。使用B-dot探头输出的电流微分信号可以较为准确地得到开关导通延迟时间,测量误差小于0.7 ns。 相似文献
16.
通过等离子体建模仿真及物理实验结合的方式验证了激光触发伪火花开关的可行性。分别使用波长266 nm和532 nm的激光,对激光触发伪火花开关的最低激光触发能量、阳极着火延迟时间和时间跳动三项参数进行测试。在非聚焦模式下,仅调整激光能量,测得开关在波长266 nm激光触发下,最低触发能量为15 mJ,该触发能量下,阳极着火延迟时间约为340 ns,时间跳动约为40 ns;在波长532 nm激光触发下,最低触发能量为83 mJ,该触发能量下,阳极着火延迟时间约为420 ns,时间跳动约为60 ns。在维持实验平台不变的情况下,仅对入射激光进行聚焦,测得波长266 nm激光触发下,最低触发能量为4 mJ,当触发能量8 mJ时,阳极着火延迟时间190 ns,开关时间跳动小于1 ns;波长532 nm激光触发下,最低触发能量为6 mJ,当激光触发能量为8 mJ时,阳极着火延迟时间240 ns,开关时间跳动小于1 ns。 相似文献
17.
为进行PTS装置单路样机激光触发开关的调试,设计安装了相应的电压电流探头。通过对比分析了探头测量结果,解释了开关出口D-dot电压探头波形畸变的原因,并运算得到了正确的波形。B-dot探头得到了与模拟结果符合的电流微分信号和电流信号。实验结果表明: D-dot探头适合MV量级的高电压脉冲测量,但当该探头工作在开关区时,设计中需要对比探头与被测电极以及其它电极的结构电容,只有满足结构电容远大于与其它高压电极的电容时,才能获得较真实的信号。如果结构设计中难以满足该要求,可以采用软件处理方法得到正确的波形。使用B-dot探头输出的电流微分信号可以较为准确地得到开关导通延迟时间,测量误差小于0.7 ns。 相似文献