首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple solution is proposed to prevent a solid state polycrystalline sample from deterioration during long time high speed spinning experiments in solid state NMR. It is found that if a certain percentage (40% volume) of polyethylene glycol (PEG, (HO–CH2–(CH2–O–CH2–)n–CH2–OH)n) is mixed with the sample that are subject to deterioration, the quality of the sample can be maintained for a long time under high speed spinning for a few days or longer, sufficient for multi-dimensional and/or low-sensitivity experiments. Both 1D and 2D experimental results are shown to support this idea.  相似文献   

2.
We demonstrate that frequency-swept pulses can be used for the selective and enhanced detection of quadrupolar nuclei located in anisotropic environments. The primary driving force for this technique development is the field of sodium-MRI, where sodium signals from locally ordered environments are known to be diagnostic of cartilage defects. We demonstrate here simple one-dimensional images of model systems, in which the signals from free sodium ions are suppressed, while ordered sodium is detected via the narrow central transition signal.  相似文献   

3.
We present several new methods that allow to obtain through-space 2D HETCOR spectra between spin-1/2 and half-integer quadrupolar nuclei in the solid state. These methods use the rotary-resonance concept to create hetero-nuclear coherences through the dipolar interaction instead of scalar coupling into the HMQC and refocused INEPT experiments for spin n/2 (n>1). In opposite to those based on the cross-polarization transfer to quadrupolar nuclei, the methods are very robust and easy to set-up.  相似文献   

4.
This article presents the realization of many self-reversible quantum logic gates using two-qubit quadrupolar spin 3/2 systems. Such operations are theoretically described using propagation matrices for the RF pulses that include the effect of the quadrupolar evolution during the pulses. Experimental demonstrations are performed using a generalized form of the recently developed method for quantum state tomography in spin 3/2 systems. By doing so, the possibility of controlling relative phases of superimposed pseudo-pure states is demonstrated. In addition, many aspects of the effect of the quadrupolar evolution, occurring during the RF pulses, on the quantum operations performance are discussed. Most of the procedures presented can be easily adapted to describe selective pulses of higher spin systems (>3/2) and for spin 1/2 under J couplings.  相似文献   

5.
The spin-locking mechanism of the spin I=3/2 quadrupolar nuclei under magic angle spinning (MAS) has been theoretically and experimentally investigated, and the criterion of adiabatic passage around zero-crossings of the quadrupole splitting was inferred from the time-dependent Shrödinger equation in this article. The theory, numerical simulations, and experiments conducted in this work all indicated that second-order quadrupole interaction and off-resonance play important roles in the spin-locking of the quadrupolar nuclei, and they were responsible for the great loss of the spin-locking signals. The spin-locking for a spin I=3/2 nucleus might be achieved by minimizing the effect of the second-order quadrupole interaction by using a radio frequency (RF) offset. This offset was realized by setting the RF to the opposite position of the isotropic second-order quadrupolar shift of single quantum coherences.  相似文献   

6.
The spin-locking mechanism of the spin I=3/2 quadrupolar nuclei under magic angle spinning (MAS) has been theoretically and experimentally investigated, and the criterion of adiabatic passage around zero-crossings of the quadrupole splitting was inferred from the time-dependent Shrödinger equation in this article. The theory, numerical simulations, and experiments conducted in this work all indicated that second-order quadrupole interaction and off-resonance play important roles in the spin-locking of the quadrupolar nuclei, and they were responsible for the great loss of the spin-locking signals. The spin-locking for a spin I=3/2 nucleus might be achieved by minimizing the effect of the second-order quadrupole interaction by using a radio frequency (RF) offset. This offset was realized by setting the RF to the opposite position of the isotropic second-order quadrupolar shift of single quantum coherences.  相似文献   

7.
We here investigate the sensitivity enhancement of central-transition NMR spectra of quadrupolar nuclei with spin-7/2 in the solid state, generated by fast amplitude-modulated RF pulse trains with constant (FAM-I) and incremented pulse durations (SW-FAM). Considerable intensity is gained for the central-transition resonance of single-quantum spectra by means of spin population transfer from the satellite transitions, both under static and magic-angle-spinning (MAS) conditions. It is also shown that incorporation of a SW-FAM train into the excitation part of a 7QMAS sequence improves the efficiency of 7Q coherence generation, resulting in improved signal-to-noise ratio. The application of FAM-type pulse trains may thus facilitate faster spectra acquisition of spin-7/2 systems.  相似文献   

8.
Gan and Kwak recently proposed a soft-pulse added mixing (SPAM) idea in the classical two-pulse multiple-quantum magic-angle spinning scheme. In the SPAM method, a soft pi/2 pulse is added after the second hard-pulse (conversion pulse) and all coherence orders in between them are constructively used to obtain the signal. We, here, further extend this idea to distributed samples where the signal mainly results from echo pathways and that from anti-echo pathways dies out after a few t1 increments. We show that, with a combination of SPAM and collection of fewer anti-echoes, an enhancement of the signal to noise ratio by a factor of ca. 3 may be obtained over the z-filtered version. This may prove to be useful even for samples with long T2' relaxation times.  相似文献   

9.
Asymmetries in the manifold of spinning sidebands (ssbs) from the satellite transitions have been observed in variable-temperature 27Al MAS NMR spectra of alum (KAl(SO4)2.12H2O), recorded in the temperature range from -76 to 92 degrees C. The asymmetries decrease with increasing temperature and reflect the fact that the ssbs exhibit systematically different linewidths for different spectral regions of the manifold. From spin-echo 27Al NMR experiments on a single-crystal of alum, it is demonstrated that these variations in linewidth originate from differences in transverse (T2) relaxation times for the two inner (m=1/2<-->m=3/2 and m=-1/2<-->m=-3/2) and correspondingly for the two outer (m=3/2<-->m=5/2 and m=-3/2<-->m=-5/2) satellite transitions. T2 relaxation times in the range 0.5-3.5 ms are observed for the individual satellite transitions at -50 degrees C and 7.05 T, whereas the corresponding T1 relaxation times, determined from similar saturation-recovery 27Al NMR experiments, are almost constant (T1=0.07-0.10 s) for the individual satellite transitions. The variation in T2 values for the individual 27Al satellite transitions for alum is justified by a simple theoretical approach which considers the cross-correlation of the local fluctuating fields from the quadrupolar coupling and the heteronuclear (27Al-1H) dipolar interaction on the T2 relaxation times for the individual transitions. This approach and the observed differences in T2 values indicate that a single random motional process modulates both the quadrupolar and heteronuclear dipolar interactions for 27Al in alum at low temperatures.  相似文献   

10.
A report is presented on the observation of Hahn echoes from the following quadrupolar nuclei of half integer spin (I) in polycrystalline solids in the large static magnetic field gradient (37.5 T/m) which exists in the fringe field of a superconducting solenoid: 7Li, 23Na, 11B, 65Cu (I = 3/2); 27Al (I = 5/2); 51V, 59Co (I = 7/2); and 115In (I = 9/2). 23Na echo-trains from NaCl (with non-selective excitation) and from Na2SO4 (with selective excitation) are compared quantitatively for two different RF pulse sequences: 90x-(τ-90y-τ-echo-)n and 90x-(τ-90x-τ-echo-)n. The signals obtained from RF pulses corresponding to non-selective 90 ° pulses were shown to be quantitative, whereas in the selective case smaller signals were obtained since only the central transition contributed. The loss of signal from this cause can be distinguished from small signals resulting from low density of nuclei by use of the second sequence. A 7Li image obtained from LiF in a cylindrical glass-vial is shown.  相似文献   

11.
Triple quantum filtered sodium MRI techniques have been recently demonstrated in vivo. These techniques have been previously advocated as a means to separate the sodium NMR signal from different physiological compartments based on the differences between their relaxation rates. Among the different triple quantum coherence transfer filters, the three-pulse coherence transfer filter has been demonstrated to be better suited for human imaging than the traditional four-pulse implementation. While the three-pulse structure has distinct advantages in terms of RF efficiency, the lack of a refocusing pulse in the filter introduces an increased dependence on the main magnetic field inhomogeneities, which can sometimes lead to significant signal loss. In this paper, we characterize these dependencies and introduce a method for their compensation through the acquisition of a B(0) map and the use of a modified phase cycling scheme.  相似文献   

12.
23Na-{51V} double resonance TRAPDOR experiments are presented on two different sodium vanadates. This is the first time that the heteronuclear dipolar interaction between nuclei, whose Larmor frequencies lie within a range of 0 to 3 MHz is detected in order to monitor connectivity and internuclear distance information in these systems.  相似文献   

13.
It has been known for a long time that the third-order quadrupole corrections to transitions from mz=-n/2 to mz=+n/2 are zero in the NMR of half-integer nuclei. However, the derivation has relied on deriving the corrections to the energy levels through somewhat laborious calculations. Only when the transitions between the levels were calculated was it revealed that the corrections to the transition frequency were zero. In this paper, we use Liouville-space methods to work with the transitions directly. Application of a recently published [A.D. Bain, Exact calculation, using angular momentum, of combined Zeeman and quadrupolar interactions in NMR, Mol. Phys. 101 (2003) 3163-3175] selection rule for the quadrupole coupling leads to a very simple proof that third-order corrections to the central and other symmetrical transitions are zero. The simplicity of the proof suggests there is a fundamental symmetry involved.  相似文献   

14.
Two-dimensional (2D) multiple quantum MAS (magic angle spinning) spectroscopy has been combined with cross-polarisation to obtain a heteronuclear correlation spectrum between a quadrupolar spin-3/2 and a spin-1/2 nucleus. The advantage over the conventional correlation experiment is the increased resolution obtained in the multiple quantum dimension. Pure absorption 2D spectra can be obtained by implementing a zero quantum filter between the evolution of multiple quanta and the subsequent cross-polarisation step. The current experiment shows a considerable improvement in sensitivity compared to a previously introduced sequence.  相似文献   

15.
Numerical simulations and experiments were used to examine the possibility of employing strong spin-lock fields for recoupling of homonuclear dipolar interactions between spin-3/2 quadrupolar nuclei and to compare it to the rotary-resonance recoupling at weak spin-lock fields. It was shown that strong spin-lock pulses under MAS conditions can lead to recoupling, provided that the electric-field gradient principal axes systems of the coupled nuclei are aligned and that their quadrupolar coupling constants are approximately the same. The phenomenon is based on the fact that strong spin-lock pulses induce adiabatic transfer of magnetization between the central-transition coherence and the triple-quantum coherence with equal periodicity as is the periodicity of the time-dependent dipolar coupling. Because of the synchronous variation of the state of the spin system and of the dipolar interaction, the effect of the latter on the central-transition coherence and on the triple-quantum coherence is not averaged out by sample rotation. The approach is, however, very sensitive to the relative orientation of the electric-field gradient principal axes systems and therefore less robust than the approach based on weak spin-lock pulses that satisfy rotary-resonance condition.  相似文献   

16.
Gan and Kwak recently introduced two new tools for high-resolution 2D NMR methods applied to quadrupolar nuclei: double-quantum filtering in STMAS (DQF-STMAS) and the soft-pulse added mixing (SPAM) idea. Double-quantum filtering suppresses all undesired signals in the STMAS method with limited loss in sensitivity. With SPAM, all pathways are added constructively after the second hard-pulse instead of using a single pathway as previously. Here, the sensitivity, advantages and drawbacks of DQF-STMAS are compared to 3QMAS. Additionally, SPAM can be included into DQF-STMAS method, resulting in a net sensitivity gain with respect to 3QMAS of ca. 10-15.  相似文献   

17.
We investigate analytically and numerically the Multiple Quantum (MQ) NMR dynamics in dipolar ordered spin systems of nuclear spins 1/2 at low temperatures. We consider two different methods of MQ NMR. One of them is based on the measurement of the dipolar energy. The other method uses an additional resonance (π/4)y-pulse after the preparation period of the standard MQ NMR experiment in solids and allows one to measure the Zeeman energy. Both considered methods are sensitive to the contribution of remote spins in the interaction and to the spin system structure. The QS method is sensitive to the spin number in the molecule while the PS method gives very similar time dependencies of the intensities of MQ coherences for different spin numbers. It is shown that the use of the dipolar ordered initial state has the advantage of exciting the highest order MQ coherences in clusters of 4m identical spins, where m=1,2,3,…, that is impossible to do with the standard MQ method. MQ NMR methods based on the dipolar ordered initial states at low temperatures complement the standard NMR spectroscopy for better studying structures and dynamic processes in solids.  相似文献   

18.
The question of the homogeneous broadening that occurs in 2D solid-state NMR experiments is examined. This homogeneous broadening is mathematically introduced in a simple way, versus the irreversible decay rates related to the coherences that are involved during t1 and t2. We give the pulse sequences and coherence transfer pathways that are used to measure these decay rates. On AlPO4 berlinite, we have measured the 27Al echo-type relaxation times of the central and satellite transitions on 1Q levels, so that of coherences that are situated on 2Q, 3Q, and 5Q levels. We compare the broadenings that can be deduced from these relaxation times to those directly observed on the isotropic projection of berlinite with multiple-quantum magic-angle spinning (MAS), or satellite-transition MAS. We show that the choice of the high-resolution method, should be done according to the spin value and the corresponding homogeneous broadening.  相似文献   

19.
Competition between nutation (r.f. driven) and adiabatic (rotor-driven) multi-quantum coherence transfer mechanisms in spin 3/2 systems results in diminished performance of rotation induced adiabatic coherence transfer (RIACT) in isotropic multiple-quantum magic-angle spinning (MQMAS) experiments for small e2qQ/h (<2 MHz) and high radio-frequency powers. We present a simple shaped RIACT pulse consisting of a truncated sine wave (spanning 0–0.8π) that corrects the sensitivity losses, phase twist and relative intensity errors that can arise in MQMAS spectra utilizing constant-amplitude RIACT pulses. The shaped RIACT pulse may enhance the study of metals in biomolecules where quadrupole couplings of S = 3/2 nuclei such as 23Na tend to be small.  相似文献   

20.
In this paper we present a series of high-resolution zero-field NMR spectra of the polycrystalline intermetallic compound GdAl2. The spectra were obtained with the sample at 4.2 K in the ordered magnetic state and in the absence of an external static magnetic field. Using a sequence composed of two RF pulses, we obtained up to five multi-quantum echoes for the 27Al nuclei, which were used to construct the zero-field NMR spectra. The spectra obtained from the FID observed after the second pulse and the even echoes exhibited higher resolution than the odd ones. In order to explain such behavior, we propose a model in which there are two regions inside the sample with different inhomogeneous spectral-line broadenings. Moreover, with the enhanced resolution from the FID signal, we were able to determine quadrupolar couplings with great precision directly from the respective spectra. These results were compared with those obtained from the quadrupolar oscillations of the echo signals, and showed good agreement. Similar data were also obtained from 155Gd and 157Gd nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号