首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we describe the algorithm OPTCON which has been developed for the optimal control of nonlinear stochastic models. It can be applied to obtain approximate numerical solutions of control problems where the objective function is quadratic and the dynamic system is nonlinear. In addition to the usual additive uncertainty, some or all of the parameters of the model may be stochastic variables. The optimal values of the control variables are computed in an iterative fashion: First, the time-invariant nonlinear system is linearized around a reference path and approximated by a time-varying linear system. Second, this new problem is solved by applying Bellman's principle of optimality. The resulting feedback equations are used to project expected optimal state and control variables. These projections then serve as a new reference path, and the two steps are repeated until convergence is reached. The algorithm has been implemented in the statistical programming system GAUSS. We derive some mathematical results needed for the algorithm and give an overview of the structure of OPTCON. Moreover, we report on some tentative applications of OPTCON to two small macroeconometric models for Austria.  相似文献   

2.
This paper deals with the computation of optimal feedback control laws for a nonlinear stochastic third-order system in which the nonlinear element is not completely specified. It is shown that, due to the structure of the system, the optimal feedback control law, whenever it exists, is not unique. Also, it is shown that, in order to implement an optimal feedback control law, a nonlinear partial differential equation has to be solved. A finite-difference algorithm for the solution of this equation is suggested, and its efficiency and applicability are demonstrated with examples.  相似文献   

3.
In this paper, we study a linear and a nonlinear boundary control problems arising from viscous flows. The equations are of nonlinear Navier-Stokes type for the velocity and pressure, of transport-diffusion type for the temperature and the salinity. The essential difficulties are due to the nonlinear nature of a part of the boundary conditions and to the nature of the equations: time-dependent, coupled and nonlinear. The existence and the conditions of the uniqueness of the solution, for the variational problem, are studied. The control is of linear or nonlinear Robin-type and acts on a part of the boundary during a time T. The cost function measures the distance between the observed and the computed vorticity. The existence of an optimal control in the admissible set of states and controls is proved. A first order necessary conditions of optimality are obtained.  相似文献   

4.
The state-delay is always existent in the practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via digital computer. In this paper, we propose a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption. This scheme is applied to the sample-data representation of a nonlinear system with constant state time-delay. The mathematical expressions of the discretization scheme are presented and the effect of the time-discretization method on equilibrium properties of nonlinear control system with state time-delay is examined. The proposed scheme provides a finite-dimensional representation for nonlinear systems with state time-delay enabling existing controller design techniques to be applied to them. The performance of the proposed discretization procedure is evaluated using a nonlinear system. For this nonlinear system, various sampling rates and time-delay values are considered.  相似文献   

5.
In this paper, a new numerical method for solving the nonlinear constrained optimal control with quadratic performance index is presented. The method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrix of integration is introduced. This matrix is then utilized to reduce the solution of the nonlinear constrained optimal control to a nonlinear programming one to which existing well-developed algorithms may be applied. Illustrative examples are included to demonstrate the validity and applicability of the technique.  相似文献   

6.
This paper presents a hybrid control method that controls to unstable equilibria of nonlinear systems by taking advantage of systems’ free dynamics. The approach uses a stable manifold tracking objective in a computationally efficient, optimization-based switching control design. Resulting nonlinear controllers are closed-loop and can be computed in real-time. Our method is validated for the cart–pendulum and the pendubot inversion problems. Results show the proposed approach conserves control effort compared to tracking the desired equilibrium directly. Moreover, the method avoids parameter tuning and reduces sensitivity to initial conditions. The resulting feedback map for the cart–pendulum has a switching structure similar to existing energy based swing-up strategies. We use the Lyapunov function from these prior works to numerically verify local stability for our feedback map. However, unlike the energy based swing-up strategies, our approach does not rely on pre-derived, system-specific switching controllers. We use hybrid optimization to automate switching control synthesis on-line for nonlinear systems.  相似文献   

7.
研究一类具有非线性不确定参数的非线性系统的自适应模型参考跟踪问题.假设系统的非线性项关于不确定参数是凸或凹的.去掉了在先前有关研究中要求参考模型矩阵有小于零的实特征值的条件.既考虑了状态反馈控制方式,也考虑了输出反馈控制方式.在采用输出反馈控制时,假设非线性项满足李普希兹条件,但李普希兹常数未知.基于一种极大极小方法,提出了一种自适应控制器的设计方法.控制器是连续的,能保证闭环系统的所有变量有界,并且渐近精确跟踪参考模型.举例说明了本结论的有用性.  相似文献   

8.
The optimal torque and voltage control for a large turbogenerator is found by using the minimum norm formulation. It should be noted that the model used is highly nonlinear. Numerical results are presented.This work was supported in part by the National Research Council of Canada, Grant No. A4146.  相似文献   

9.
在控制理论和控制工程中,镇定控制器的设计是一个经典问题。许多有关这个问题的结论一般都是针对线性系统。对于非线性系统,很少见到有构造性结果能用于控制工程中。本针对一类广泛的非线性控制系统,我们构造了一些控制器,这些判据在工程实际问题中将具有一定的指导意义。  相似文献   

10.
The solutions of most nonlinear optimal control problems are given in the form of open-loop optimal control which is computed from a given fixed initial condition. Optimal feedback control can in principle be obtained by solving the corresponding Hamilton-Jacobi-Bellman dynamic programming equation, though in general this is a difficult task. We propose a practical and effective alternative for constructing an approximate optimal feedback controller in the form of a feedforward neural network, and we justify this choice by several reasons. The controller is capable of approximately minimizing an arbitrary performance index for a nonlinear dynamical system for initial conditions arising from a nontrivial bounded subset of the state space. A direct training algorithm is proposed and several illustrative examples are given.This research was carried out with the support of a grant from the Australian Research Council.We thank the anonymous reviewers for their helpful comments.  相似文献   

11.
A novel state-space self-tuning control methodology for a nonlinear stochastic hybrid system with stochastic noise/disturbances is proposed in this paper. via the optimal linearization approach, an adjustable NARMAX-based noise model with estimated states can be constructed for the state-space self-tuning control in nonlinear continuous-time stochastic systems. Then, a corresponding adaptive digital control scheme is proposed for continuous-time multivariable nonlinear stochastic systems, which have unknown system parameters, measurement noise/external disturbances, and inaccessible system states. The proposed method enables the development of a digitally implementable advanced control algorithm for nonlinear stochastic hybrid systems.  相似文献   

12.
Feedback linearization is a well-known technique in nonlinear control in which known system nonlinearities are canceled by the control input leaving a linear control problem. Feedback linearization requires an exact model for the system. Fundamental and advanced developments in neuro-fuzzy synergy for modeling and control are used to apply the feedback linearization control law on second-order plants. In the models that are used, the nonlinear plant is decomposed on six fuzzy systems necessary to apply the control signal to allow the following of a reference value. A practical application is also presented using a waste water plant. This method can be extended to multiple input–multiple output (MIMO) plants based on input–output data pairs collected directly from the plant.  相似文献   

13.
The paper is concerned with the design of an integral control for minimum-phase nonlinear systems that have a well-defined relative degree. Earlier work by the author and coworkers has shown how integral control can be combined with robust control techniques to achieve nonlocal and semiglobal regulation results. The results are applicable to output feedback control problems through the use of high-gain observers and saturation nonlinearities. When used with sliding-mode control, the technique produces universal integral regulators that have been shown to coincide with PI and PID controllers, followed by limiters, for relative-degree-one systems and relative-degree-two systems. The use of integral action improves the steady-state response at the expense of degrading the transient response. The present paper summarizes two recent techniques to modify the universal integral regulator so as to improve its transient performance. One technique uses antiwindup integration, while the other uses nonlinear integrators.  相似文献   

14.
The problem of the decentralized robust control is considered for a class of large-scale time-varying systems withdelayed state perturbations and external disturbances in the interconnections. Here, the upper bounds of the delayed stateperturbations and external disturbances in the interconnections are assumed to be unknown. Adaptation laws areproposed to estimate such unknown bounds; by making use of the updated values of the unknown bounds, decentralized linear and nonlinear memoryless robust state feedback controllers are constructed. Based on Lyapunov stability theoryand Lyapunov–Krasovskii functionals, as well as employing the proposed decentralized nonlinear robust state feedback controllers, it is shown that the solutions of the resulting adaptive closed-loop large-scale time-delay system can be guaranteed to be uniformly bounded and that the states converge uniformly and asymptotically to zero. It is also shown that the proposed decentralized linear robust state feedback controllers can guarantee the uniform ultimate boundedness of the resulting adaptive closed-loop large-scale time-delay system. Finally, a numerical example is given to demonstrate the validity of the results.  相似文献   

15.
提出了一种基于不变集切换的非线性系统鲁棒预测控制算法.采用分段蕴含方法将非线性系统动态用一组线性变参数(LPV)系统动态包裹;计算出非线性系统的平衡面,对于每个LPV蕴含模型,针对相应的平衡点构造多面体不变集,得到覆盖非线性系统平衡面的一组相互重叠的不变集;在线根据系统当前状态所处的不变集和LPV区间切换控制律,最终保证闭环系统的稳定性.与传统的非线性预测控制相比,这种方法在构造不变集和确定控制律的计算都是离线进行,而在线只需根据当前状态切换控制律即可,从而避免了求解复杂的非凸非线性规划,在很大程度上降低了在线计算量.  相似文献   

16.
Some sufficient conditions are presented for the observability of systems described by nonlinear, ordinary differential equations with linear observations. The point which the authors especially emphasize is the fact that the results obtained are global in some sense. In the beginning, the observability problem is reduced to the uniqueness problem of solutions of some nonlinear integral equations for general nonlinear systems with linear observations. Then, for some restricted systems, a simple sufficient condition is derived. The relation between global and local observability for nonlinear systems is also considered.The authors wish to thank their colleagues in Nagoya University.  相似文献   

17.
In this paper, the optimal control of a system with two identical interconnected turbogenerators, which are connected to an infinite bus, is considered. The alternators are controlled through a linear feedback of the state variables. The feedback parameters are obtained by solving a nonlinear, two-point boundary-value problem. The values obtained for these parameters depend on the strength and duration of the disturbance, since the model is nonlinear, contrary to the usual feedback control of a linear model. In contrast to the model used in Ref. 1, the model used here includes the transfer function of the governors, the turbines, and the voltage regulators.This work was supported in part by the National Science and Engineering Research Council of Canada, Grant No. A4146. The authors wish to express their appreciation to Mr. T. L. Gan for his help in computations.  相似文献   

18.
The combustion temperature and progress control problems are key factors to ensure the production quality of metallurgy lime kiln. The combustion process of lime kiln is a nonlinear and large time‐delay thermal process, so it is difficult to achieve satisfactory results by the traditional proportional integral derivative control, fuzzy control, or predictive control. This article analyses physics and chemistry mechanism of the combustion process and expounds the complex nonlinear, multivariable and large time‐delay characteristics, and the control target of the production system. Then, the mathematical model of combustion control system is deduced in view of the requirements of simulation. Based on these, the fuzzy predictive control scheme is employed. Through simulation, the control algorithm is verified to be effective. Finally, the industrial sleeve kiln as a practical example is used to demonstrate the effectiveness and feasibility of the control algorithm. © 2016 Wiley Periodicals, Inc. Complexity 21: 249–258, 2016  相似文献   

19.
State-dependent Riccati equation (SDRE) techniques are rapidly emerging as general design and synthesis methods of nonlinear feedback controllers and estimators for a broad class of nonlinear regulator problems. In essence, the SDRE approach involves mimicking standard linear quadratic regulator (LQR) formulation for linear systems. In particular, the technique consists of using direct parameterization to bring the nonlinear system to a linear structure having state-dependent coefficient matrices. Theoretical advances have been made regarding the nonlinear regulator problem and the asymptotic stability properties of the system with full state feedback. However, there have not been any attempts at the theory regarding the asymptotic convergence of the estimator and the compensated system. This paper addresses these two issues as well as discussing numerical methods for approximating the solution to the SDRE. The Taylor series numerical methods works only for a certain class of systems, namely with constant control coefficient matrices, and only in small regions. The interpolation numerical method can be applied globally to a much larger class of systems. Examples will be provided to illustrate the effectiveness and potential of the SDRE technique for the design of nonlinear compensator-based feedback controllers.  相似文献   

20.
Parametric nonlinear optimal control problems subject to control and state constraints are studied. Two discretization methods are discussed that transcribe optimal control problems into nonlinear programming problems for which SQP-methods provide efficient solution methods. It is shown that SQP-methods can be used also for a check of second-order sufficient conditions and for a postoptimal calculation of adjoint variables. In addition, SQP-methods lead to a robust computation of sensitivity differentials of optimal solutions with respect to perturbation parameters. Numerical sensitivity analysis is the basis for real-time control approximations of perturbed solutions which are obtained by evaluating a first-order Taylor expansion with respect to the parameter. The proposed numerical methods are illustrated by the optimal control of a low-thrust satellite transfer to geosynchronous orbit and a complex control problem from aquanautics. The examples illustrate the robustness, accuracy and efficiency of the proposed numerical algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号