首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of N7 protonation on the mechanism of the N-glycosidic bond hydrolysis in 2'-deoxyguanosine has been studied using density functional theory (DFT) methods. For the neutral system, two different pathways (with retention and inversion of configuration at the C1' anomeric carbon) have been found, both of them consisting of two steps and involving the formation of a dihydrofurane-like intermediate. The Gibbs free energy barrier for the first step is very high in both cases (53 and 46 kcal/mol for the process with inversion and with retention, respectively). However, the N7-protonated system shows a very different mechanism which consists of two steps. The first one leads to the formation of an oxacarbenium ion intermediate, with a Gibbs free energy barrier of 27 kcal/mol, and the second one corresponds to the nucleophilic attack of the water molecule to the oxacarbenium ion and takes place with a barrier of 1.3 kcal/mol. Thus, these results agree with a stepwise SN1 mechanism (DN*AN), with a discrete intermediate formed between the leaving group and the nucleophile approach, and show that N7 protonation strongly catalyzes the hydrolysis of the N-glycosidic bond, making the guanine a better leaving group. Finally, kinetic isotope effects have been calculated for the protonated system, and the results obtained are in very good agreement with experimental data for analogous systems.  相似文献   

2.
The energy hypersurface for the attack of fluoride ion on methyl fluoride has been explored with ab initio LCAO-SCF calculations at a split-valence basis set level. Transition states for frontside and backside attack have been located. In addition to transition states, two possible F-CH3F clusters have been identified. The transition state for the substitution of fluoride with retention of configuration is found to be 56 kcal/mol higher than the transition state for inversion of configuration. The transition state for hydride displacement with inversion is 62 kcal/mol above the transition state for fluoride substitution with inversion.  相似文献   

3.
Theoretical ab initio calculations including liquid phase optimizations were used to investigate the S(N)Ar reaction of the fluoride ion with p-chlorobenzonitrile in dimethyl sulfoxide solution. The effect of the counter ion and hydration of the fluoride ion with one water molecule was analyzed. The calculations indicate that the gas-phase S(N)Ar reaction is more favorable than the corresponding S(N)2 reactions involving fluoride ion and 2-chlorobutane. However, the substantially higher solvent effect on the S(N)Ar reaction makes the nucleophilic substitution on the aromatic ring less favorable than the aliphatic reaction in the liquid phase. For the anhydrous tetrabutylammonium fluoride system, the theoretical free energy barrier of 22.1 kcal mol(-1) is close to the experimental one of 24.4 kcal mol(-1). The smaller tetramethylammonium cation strongly associates with the fluoride ion and increases the barrier by 5 kcal mol(-1). Similarly, just one water molecule hydrating the fluoride ion has the same effect. An analysis of the reaction involving the ion pair and the free anion in different polarity media predicts an unexpected behavior and indicates there is an ideal solvent polarity for each counter ion.  相似文献   

4.
Density functional theory computations and pulsed-ionization high-pressure mass spectrometry experiments have been used to explore the potential energy surfaces for gas-phase S(N)2 reactions between halide ions and trifluoromethyl halides, X(-) + CF(3)Y --> Y(-) + CF(3)X. Structures of neutrals, ion-molecule complexes, and transition states show the possibility of two mechanisms: back- and front-side attack. From pulsed-ionization high-pressure mass spectrometry, enthalpy and entropy changes for the equilibrium clustering reactions for the formation of Cl(-)(BrCF(3)) (-16.5 +/- 0.2 kcal mol(-1) and -24.5 +/- 1 cal mol(-1) K(-1)), Cl(-)(ICF(3)) (-23.6 +/- 0.2 kcal mol(-1)), and Br(-)(BrCF(3)) (-13.9 +/- 0.2 kcal mol(-1) and -22.2 +/- 1 cal mol(-1) K(-1)) have been determined. These are in good to excellent agreement with computations at the B3LYP/6-311+G(3df)//B3LYP/6-311+G(d) level of theory. It is shown that complex formation takes place by a front-side attack complex, while the lowest energy S(N)2 reaction proceeds through a back-side attack transition state. This latter mechanism involves a potential energy profile which closely resembles a condensed phase S(N)2 reaction energy profile. It is also shown that the Cl(-) + CF(3)Br --> Br(-) + CF(3)Cl S(N)2 reaction can be interpreted using Marcus theory, in which case the reaction is described as being initiated by electron transfer. A potential energy surface at the B3LYP/6-311+G(d) level of theory confirms that the F(-) + CF(3)Br --> Br(-) + CF(4) S(N)2 reaction proceeds through a Walden inversion transition state.  相似文献   

5.
The pyramidal inversion of the N(5)-centre of several reduced flavins was measured by NMR. The inversion barrier was found to be ~10 kcal/mol in acetone solutions and to be independent of the size of the N(5) substituent. An increase of the inversion barrier of ~5 kcal/mol was observed in the case where the N(5) substituent could only be in axial position, and an increase of ~3.5 kcal/mol was observed for an acyl-like N(5) substituent. In aqueous solution the inversion barrier increases by ~3 kcal/mol. The stereochemistry of reduced flavin and its potential relevance in flavin-dependent biological dehydrogenations is discussed.  相似文献   

6.
Identity ion-pair S(N)2 reactions LiX + CH(3)X --> XCH(3) + LiX (X = F, Cl, Br, and I) have been investigated in the gas phase and in solution at the level of the modified Gaussian-2 theory. Two possible reaction mechanisms, inversion and retention, are discussed. The reaction barriers relative to the complexes for the inversion mechanism [DeltaH(cent) ( not equal )(inv)] are found to be much higher than the corresponding values for the gas phase anionic S(N)2 reactions, decreasing in the following order: F (263.6 kJ mol(-1)) > Cl (203.3 kJ mol(-1)) > Br (174.7 kJ mol(-1)) > I (150.7 kJ mol(-1)). The barrier gaps between the two mechanisms [DeltaH(cent) ( not equal ) (ret) - DeltaH(cent) ( not equal ) (inv)] increase in the order F (-62.7 kJ mol(-1)) < Cl (4.4 kJ mol(-1)) < Br (24.9 kJ mol(-1)) < I (45.1 kJ mol(-1)). Thus, the retention mechanism is energetically favorable for fluorine and the inversion mechanism is favored for other halogens, in contrast to the anionic S(N)2 reactions at carbon where the inversion reaction channel is much more favorable for all of the halogens. The stabilization energies for the dipole-dipole complexes CH(3)X. LiX (DeltaH(comp)) are found to be similar for the entire set of systems with X = F, Cl, Br, and I, ranging from 53.4 kJ mol(-1) for I up to 58.9 kJ mol(-1) for F. The polarizable continuum model (PCM) has been used to evaluate the direct solvent effects on the energetics of the anionic and ion-pair S(N)2 reactions. The energetic profiles are found to be still double-well shaped for most of the ion-pair S(N)2 reactions in the solution, but the potential profile for reaction LiI + CH(3)I is predicted to be unimodal in the protic solvent. Good correlations between central barriers [DeltaH(cent) ( not equal ) (inv)] with the geometric looseness of the inversion transition state %C-X( not equal ), the dissociation energies of the C-X bond (D(C-X)) and Li-X bond (D(Li-X)) are observed, respectively.  相似文献   

7.
Reaction pathways and free energy barriers for alkaline hydrolysis of the highly neurotoxic insecticide 2-trimethylammonioethyl methylphosphonofluoridate and related organophosphorus compounds were studied by performing first-principles electronic structure calculations on representative methylphosphonofluoridates, (RO)CH3P(O)F, in which R = CH2CH2N+(CH3)3, CH3, CH2CH2C(CH3)3, CH2CH2CH(CH3)2, CH(CH3)CH2N+(CH3)3, and CH(CH3)CH2N(CH3)2. The dominant reaction pathway was found to be associated with a transition state in which the attacking nucleophile OH- and the leaving group F- are positioned on opposite sides of the plane formed by the three remaining atoms attached to the phosphorus in order to minimize the electrostatic repulsion between these two groups. The free energy barriers calculated for the rate-determining step of the dominant pathway are 12.5 kcal/mol when R = CH2CH2N+(CH3)3, 15.5 kcal/mol when R = CH3, 17.9 kcal/mol when R = CH2CH2C(CH3)3, 16.5 kcal/mol when R = CH2CH2CH(CH3)2, 13.4 kcal/mol when R = CH(CH3)CH2N+(CH3)3, and 18.7 kcal/mol when R = CH(CH(3))CH(2)N(CH(3))(2). The calculated free energy barriers are in good agreement with available experimentally derived activation free energies, i.e. 14.7 kcal/mol when R = CH(3), 13.4 kcal/mol when R = CH2CH2N+(CH3)3, and 13.9 kcal/mol when R = CH(CH3)CH2N+(CH3)3. A detailed analysis of the calculated energetic results and available experimental data suggests that the net charge of the molecule (M) being hydrolyzed is a prominent factor affecting the free energy barrier (DeltaG) for the alkaline hydrolysis of phosphodiesters, phosphonofluoridates, and related organophosphorus compounds. The electrostatic interactions between the attacking nucleophile OH- and the molecule M being hydrolyzed favor such an order of the free energy barrier: DeltaG(M(+)+OH-) < DeltaG(M0+OH-) < DeltaG(M(-)+OH-), where M+, M0, and M- represent the cationic, neutral, and anionic molecules, respectively. The change of the substituent R in (RO)CH(3)P(O)F from CH3 to CH2CH2N+(CH3)3 is associated with both the electrostatic and steric effects on the free energy barrier, but the electrostatic effect dominates the substituent shift of the free energy barrier. This helps to better understand why the alkaline hydrolysis of (RO)CH3P(O)F with R = CH2CH2N+(CH3)3 and CH(CH3)CH2N+(CH3)3 is significantly faster than that with R = CH3. The effect of electrostatic interaction also helps to understand why the rate constants for the alkaline hydrolysis of phosphodiesters, such as intramolecular second messenger adenosine 3',5'-phosphate (cAMP), are generally smaller than those for the alkaline hydrolysis of the phosphonofluoridates and related phosphotriesters.  相似文献   

8.
Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the neutral and ionic N(x)F(y) and O(x)F(y) systems using coupled cluster theory with single and double excitations and including a perturbative triples correction (CCSD(T)) method with correlation consistent basis sets extrapolated to the complete basis set (CBS) limit. To achieve near chemical accuracy (±1 kcal/mol), three corrections to the electronic energy were added to the frozen core CCSD(T)/CBS binding energies: corrections for core-valence, scalar relativistic, and first order atomic spin-orbit effects. Vibrational zero point energies were computed at the CCSD(T) level of theory where possible. The calculated heats of formation are in good agreement with the available experimental values, except for FOOF because of the neglect of higher order correlation corrections. The F(+) affinity in the N(x)F(y) series increases from N(2) to N(2)F(4) by 63 kcal/mol, while that in the O(2)F(y) series decreases by 18 kcal/mol from O(2) to O(2)F(2). Neither N(2) nor N(2)F(4) is predicted to bind F(-), and N(2)F(2) is a very weak Lewis acid with an F(-) affinity of about 10 kcal/mol for either the cis or trans isomer. The low F(-) affinities of the nitrogen fluorides explain why, in spite of the fact that many stable nitrogen fluoride cations are known, no nitrogen fluoride anions have been isolated so far. For example, the F(-) affinity of NF is predicted to be only 12.5 kcal/mol which explains the numerous experimental failures to prepare NF(2)(-) salts from the well-known strong acid HNF(2). The F(-) affinity of O(2) is predicted to have a small positive value and increases for O(2)F(2) by 23 kcal/mol, indicating that the O(2)F(3)(-) anion might be marginally stable at subambient temperatures. The calculated adiabatic ionization potentials and electron affinities are in good agreement with experiment considering that many of the experimental values are for vertical processes.  相似文献   

9.
Dynamics of an endothermic proton-transfer reaction, F(-) with dimethyl sulfoxide, and an endothermic proton-transfer reaction with a competing exothermic substitution (S(N)2) channel, F(-) with borane-methyl sulfide complex, were investigated using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR) and kinetic modeling. The two proton-transfer reactions have slightly positive and a small negative overall free energy changes, respectively. Energy-dependent rate constants were measured as a function of F(-) ion translational energy, and the resulting kinetics were modeled with the RRKM (Rice-Ramsperger-Kassel-Marcus) theory. The observed rate constants for the proton-transfer reactions of F(-) with dimethyl sulfoxide and with borane-methyl sulfide complex are identical, with a value of 0.17 x 10(-9) cm(3) molecule(-1) s(-1); for the S(N)2 reaction, k = 0.90 x 10(-9) cm(3) molecule(-1) s(-1) at 350 K. Both proton-transfer reactions have positive entropy changes in the forward direction and show positive energy dependences. The competing S(N)2 reaction exhibits negative energy dependence and becomes less important at higher energies. The changes of the observed rate constants agree with RRKM theory predictions for a few kcal/mol of additional kinetic energy. The dynamic change of the branching ratio for the competing proton transfer and the substitution reactions results from the competition between the microscopic rate constants associated with each channel.  相似文献   

10.
Quantum-chemical calculations were performed on the mechanisms of reaction of NCN with NO and NS. Possible mechanisms were classified according to four pathways yielding products in the following four possible groups: N2O/N2S + CN, N2 + NCO/NCS, N2 + CNO/CNS, and CNN + NO/NS, labeled in order from p1/p1s to p4/p4s. The local structures, transition structures, and potential-energy surfaces with respect to the reaction coordinates are calculated, and the barriers are compared. In the NCN + NO reaction, out of several adduct structures, only the nitroso adduct NCNNO lies lower in energy than the reactants, by 21.89 kcal/mol; that adduct undergoes rapid transformation into the products, in agreement with experimental observation. For the NS counterpart, both thionitroso NCNNS and thiazyl NCNSN adducts have energies much lower than those of the reactants, by 43 and 29 kcal/mol, respectively, and a five-membered-ring NCNNS (having an energy lower than those of the reactants by 36 kcal/mol) acts as a bridge in connecting these two adducts. The net energy barriers leading to product channels other than p4s are negative for the NS reaction, whereas those for the NO analogue are all positive. The channel leading to p1 (N2O + CN) has the lowest energy (3.81 kcal/mol), whereas the channels leading to p2 (N2 + NCO) and p2s (N2 + NCS) are the most exothermic (100.94 and 107.38 kcal/mol, respectively).  相似文献   

11.
We have computed a state-of-the-art benchmark potential energy surface (PES) for two reaction pathways (oxidative insertion, OxIn, and S(N)2) for oxidative addition of the fluoromethane C-F bond to the palladium atom and have used this to evaluate the performance of 26 popular density functionals, covering LDA, GGA, meta-GGA, and hybrid density functionals, for describing these reactions. The ab initio benchmark is obtained by exploring the PES using a hierarchical series of ab initio methods (HF, MP2, CCSD, CCSD(T)) in combination with a hierarchical series of seven Gaussian-type basis sets, up to g polarization. Relativistic effects are taken into account through a full four-component all-electron approach. Our best estimate of kinetic and thermodynamic parameters is -5.3 (-6.1) kcal/mol for the formation of the reactant complex, 27.8 (25.4) kcal/mol for the activation energy for oxidative insertion (OxIn) relative to the separate reactants, 37.5 (31.8) kcal/mol for the activation energy for the alternative S(N)2 pathway, and -6.4 (-7.8) kcal/mol for the reaction energy (zero-point vibrational energy-corrected values in parentheses). Our work highlights the importance of sufficient higher angular momentum polarization functions for correctly describing metal-d-electron correlation. Best overall agreement with our ab initio benchmark is obtained by functionals from all three categories, GGA, meta-GGA, and hybrid DFT, with mean absolute errors of 1.4-2.7 kcal/mol and errors in activation energies ranging from 0.3 to 2.8 kcal/mol. The B3LYP functional compares very well with a slight underestimation of the overall barrier for OxIn by -0.9 kcal/mol. For comparison, the well-known BLYP functional underestimates the overall barrier by -10.1 kcal/mol. The relative performance of these two functionals is inverted with respect to previous findings for the insertion of Pd into the C-H and C-C bonds. However, all major functionals yield correct trends and qualitative features of the PES, in particular, a clear preference for the OxIn over the alternative S(N)2 pathway.  相似文献   

12.
The structures, energetics, and aromatic character of dicyclobuta[de,ij]naphthalene, 1, dicyclopenta[cd,gh]pentalene, 2, dihydrodicyclobuta[de,ij]naphthalene, 3, and dihydrocyclopenta[cd,gh]pentalene, 4, have been examined at the B3LYP/6-311++G//B3LYP/6-31G level of theory. All molecules are bowl-shaped, and the pentalene isomers, 2 and 4, are most stable. A comparison with other C(12)H(6) and C(12)H(8) isomers indicates that 2 is approximately 25 kcal/mol less stable than 1,5,9-tridehydro[12]annulene and 4 is approximately 100 kcal/mol higher in energy than acenaphthylene, both of which are synthetically accessible. The transition state structure for bowl-to-bowl inversion of 1 is planar (D(2)(h)()) and lies 30.9 kcal/mol higher in energy than the ground state; the transition state for inversion of 2 is C(2)(h)() and lies 46.6 kcal/mol higher in energy. Symmetry considerations, bond length alternations, and NICS values (a magnetic criterion) all indicate that the ground states of 1, 3, and 4 are very aromatic; however, HOMA values (a measure of bond delocalization) indicate that 3S and 4S are aromatic but that 1S is less so. NICS values for the ground state of 2 strongly indicate aromaticity; however, bond localization, symmetry, and HOMA values argue otherwise.  相似文献   

13.
14.
In this paper, we identify the most efficient decay and isomerization route of the S(1), T(1), and S(0) states of azobenzene. By use of quantum chemical methods, we have searched for the transition states (TS) on the S(1) potential energy surface and for the S(0)/S(1) conical intersections (CIs) that are closer to the minimum energy path on the S(1). We found only one TS, at 60 degrees of CNNC torsion from the E isomer, which requires an activation energy of only 2 kcal/mol. The lowest energy CIs, lying also 2 kcal/mol above the S(1) minimum, were found on the torsion pathway for CNNC angles in the range 95-90 degrees. The lowest CI along the inversion path was found ca. 25 kcal/mol higher than the S(1) minimum and was characterized by a highly asymmetric molecular structure with one NNC angle of 174 degrees. These results indicate that the S(1) state decay involves mainly the torsion route and that the inversion mechanism may play a role only if the molecule is excited with an excess energy of at least 25 kcal/mol with respect to the S(1) minimum of the E isomer. We have calculated the spin-orbit couplings between S(0) and T(1) at several geometries along the CNNC torsion coordinate. These spin-orbit couplings were about 20-30 cm(-)(1) for all the geometries considered. Since the potential energy curves of S(0) and T(1) cross in the region of twisted CNNC angle, these couplings are large enough to ensure that the T(1) lifetime is very short ( approximately 10 ps) and that thermal isomerization can proceed via the nonadiabatic torsion route involving the S(0)-T(1)-S(0) crossing with preexponential factor and activation energy in agreement with the values obtained from kinetic measures.  相似文献   

15.
The anionic S(N)2 reactions at neutral nitrogen, Nu(-) + NR(2)Cl → NR(2)Nu + Cl(-) (R = H, Me; Nu = F, Cl, Br, OH, SH, SeH, NH(2), PH(2), AsH(2)) have been systematically studied computationally at the modified G2(+) level. Two reaction mechanisms, inversion and retention of configuration, have been investigated. The main purposes of this work are to explore the reactivity trend of anions toward NR(2)Cl (R = H, Me), the steric effect on the potential energy surfaces, and the leaving ability of the anion in S(N)2@N reactions. Our calculations indicate that the complexation energies are determined by the gas basicity (GB) of the nucleophile and the electronegativity (EN) of the attacking atom, and the overall reaction barrier in the inversion pathway is basically controlled by the GB value of the nucleophile. The retention pathway in the reactions of NR(2)Cl with Nu(-) (Nu = F, Cl, Br, OH, SH, SeH) is energetically unfavorable due to the barriers being larger than those in the inversion pathway by more than 120 kJ mol(-1). Activation strain model analyses show that a higher deformation energy and a weaker interaction between deformed reactants lead to higher overall barriers in the reactions of NMe(2)Cl than those in the reactions of NH(2)Cl. Our studies on the reverse process of the title reactions suggest that the leaving ability of the anion in the gas phase anionic S(N)2@N reactions is mainly determined by the strength of the N-LG bond, which is related to the negative hyperconjugation inherent in NR(2)Nu (R = H, Me; Nu = HO, HS, HSe, NH(2), PH(2), AsH(2)).  相似文献   

16.
Enthalpies of chalcogen atom transfer to Mo(N[t-Bu]Ar)3, where Ar = 3,5-C6H3Me2, and to IPr (defined as bis-(2,6-isopropylphenyl)imidazol-2-ylidene) have been measured by solution calorimetry leading to bond energy estimates (kcal/mol) for EMo(N[t-Bu]Ar)3 (E = S, 115; Se, 87; Te, 64) and EIPr (E = S, 102; Se, 77; Te, 53). The enthalpy of S-atom transfer to PMo(N[ t-Bu]Ar) 3 generating SPMo(N[t-Bu]Ar)3 has been measured, yielding a value of only 78 kcal/mol. The kinetics of combination of Mo(N[t-Bu]Ar)3 with SMo(N[t-Bu]Ar)3 yielding (mu-S)[Mo(N[t-Bu]Ar)3]2 have been studied, and yield activation parameters Delta H (double dagger) = 4.7 +/- 1 kcal/mol and Delta S (double dagger) = -33 +/- 5 eu. Equilibrium studies for the same reaction yielded thermochemical parameters Delta H degrees = -18.6 +/- 3.2 kcal/mol and Delta S degrees = -56.2 +/- 10.5 eu. The large negative entropy of formation of (mu-S)[Mo(N[t-Bu]Ar)3]2 is interpreted in terms of the crowded molecular structure of this complex as revealed by X-ray crystallography. The crystal structure of Te-atom transfer agent TePCy3 is also reported. Quantum chemical calculations were used to make bond energy predictions as well as to probe terminal chalcogen bonding in terms of an energy partitioning analysis.  相似文献   

17.
Polynitrogen molecules have been studied systematically at high levels of ab initio and density functional theory (DFT). Besides N(2), the thermodynamically most stable N(n)() molecules, located with the help of a newly developed energy increment system, are all based on pentazole units. The geometric, energetic, and magnetic criteria establish pentazole (2) and its anion (3) to be as aromatic as their isoelectronic analogues, e.g., furan, pyrrole, and the cyclopentadienyl anion. The bond lengths in 2 and 3 are equalized; both have large aromatic stabilization energies (ASE) and also substantial magnetic susceptibility exaltations (Lambda). The C(s)() symmetric azidopentazole (14), a candidate for experimental investigation, is the lowest energy N(8) isomer but is still 196.7 kcal/mol higher in energy than four N(2) molecules. Octaazapentalene (12) with 10 pi electrons also is aromatic. The D(2)(d)() symmetric bispentazole (21) is the lowest energy N(10) minimum but is 260 kcal/mol higher in energy than five N(2) molecules. For strain-free molecules, the average deviation is +/-2.6 kcal/mol between the DFT energies and those based on the increment scheme. The increment scheme also provides estimates of the strain energies of polynitrogen compounds, e.g., tetraazatetrahedrane (8, 48.2 kcal/mol), octaazacubane (11, 192.6 kcal/mol), and N(20) (27, 294.6 kcal/mol), and is useful in searching for new high-energy-high-density materials.  相似文献   

18.
Guided ion beam tandem mass spectrometry techniques are used to examine the competing product channels in the reaction of Cl(-) with CH(3)F in the center-of-mass collision energy range 0.05-27 eV. Four anionic reaction products are detected: F(-), CH(2)Cl(-), FCl(-), and CHCl(-). The endothermic S(N)2 reaction Cl(-) + CH(3)F --> CH(3)Cl + F(-) has an energy threshold of E(0) = 181 +/- 14 kJ/mol, exhibiting a 52 +/- 16 kJ/mol effective barrier in excess of the reaction endothermicity. The potential energy of the S(N)2 transition state is well below the energy of the products. Dynamical impedances to the activation of the S(N)2 reaction are discussed, including angular momentum constraints, orientational effects, and the inefficiency of translational energy in promoting the reaction. The fluorine abstraction reaction to form CH(3) + FCl(-) exhibits a 146 +/- 33 kJ/mol effective barrier above the reaction endothermicity. Direct proton transfer to form HCl is highly inefficient, but HF elimination is observed above 268 +/- 95 kJ/mol. Potential energy surfaces for the reactions are calculated using the CCSD(T)/aug-cc-pVDZ and HF/6-31+G(d) methods and used to interpret the dynamics.  相似文献   

19.
The IR (gas) and Raman (liquid) spectra of FC(O)NSCl(2) demonstrate the presence of a conformational mixture in both phases. According to a gas electron diffraction study, the main conformer (94(8)%) possesses a syn-syn structure (C(O)F group synperiplanar with respect to the SCl(2) bisector and the C=O bond synperiplanar to the N=S bond). Quantum chemical calculations (HF, B3LYP and MP2 with 6-31G basis set, and MP2/6-311(2df)) predict a syn-anti structure for the second conformer. Analysis of the IR (gas) spectrum results in a contribution of 5(1)% of the minor form, corresponding to a Gibbs free energy difference DeltaG degrees = G degrees (syn-anti) - G degrees (syn-syn) = 1.75(15) kcal/mol. This value is reproduced very well by quantum chemical calculations, which include electron correlation effects (DeltaG degrees = 1.28-1.56 kcal/mol). The HF approximation overestimates this energy difference (DeltaG degrees = 3.24 kcal/mol).  相似文献   

20.
M. Shanshal 《Tetrahedron》1972,28(1):61-72
MINDO/2-SCF-MO calculations for the ground state properties of N-methyl- and N-phenyl-azomethin have been carried out. The calculated rotation barrier for the methyl group in N-methyl-azomethin was 0·8 kcal/mol, the eclipsed conformation being most stable. The calculated rotation barrier about the CN bond in the protonated methylazomethin was 27·9 kcal/mol. MINDO/1-SCF-MO treatment for the N-inversion barrier of the unprotonated species yielded 13·00 kcal/mol. Similar MINDO/2 calculations for N-phenylazomethin yielded 4·0 kcal/mol for the rotation barrier of the phenyl ring around the CN= bond, the perpendicular conformation of the ring to the CNC plane being most stable. For the corresponding N protonated derivative the value 27·3 kcal/mol was calculated for the rotation barrier around the CN bond. MINDO/1 treatment yielded an inversion barrier of 14·0 kcal/mol for N-phenylazomethin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号