首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
La^3+,Co^2+,Cu^2+,Zn^2+与X沸石的微波加热离子交换   总被引:12,自引:0,他引:12  
用微波加热法研究了水溶液中金属阳离子La^3+,Co^2+,Cu^2+,Zn^2+与沸石分子筛NaX之间的离子交换反应。考察了溶液浓度、加热时间、苏州地交换度的影响并运用正交实验做了直观分析优化。对比实验及X射线粉末衍射结果表明,在相同的工艺条件下,微波加热法比传统加热法快约60倍,微波加热对分子筛晶体结构没有破坏作用。  相似文献   

2.
A series of reactions involving Fe(+) ions were studied by the pulsed laser ablation of an iron target, with detection of ions by quadrupole mass spectrometry at the downstream end of a fast flow tube. The reactions of Fe(+) with N(2)O, N(2) and O(2) were studied in order to benchmark this new technique. Extending measurements of the rate coefficient for Fe(+) + N(2)O from 773 K to 185 K shows that the reaction exhibits marked non-Arrhenius behaviour, which appears to be explained by excitation of the N(2)O bending vibrational modes. The recombination of Fe(+) with CO(2) and H(2)O in He was then studied over a range of pressure and temperature. The data were fitted by RRKM theory combined with ab initio quantum calculations on Fe(+).CO(2) and Fe(+).H(2)O, yielding the following results (120-400 K and 0-10(3) Torr). For Fe(+) + CO(2): k(rec,0) = 1.0 x 10(-29) (T/300 K)(-2.31) cm(6) molecule(-2) s(-1); k(rec,infinity) = 8.1 x 10(-10) cm(3) molecule(-1) s(-1). For Fe(+) + H(2)O: k(rec,0) = 5.3 x 10(-29) (T/300 K)(-2.02) cm(6) molecule(-2) s(-1); k(rec,infinity) = 2.1 x 10(-9) (T/300 K)(-0.41) cm(3) molecule(-1) s(-1). The uncertainty in these rate coefficients is determined using a Monte Carlo procedure. A series of exothermic ligand-switching reactions were also studied at 294 K: k(Fe(+).N(2) + O(2)) = (3.17 +/- 0.41) x 10(-10), k(Fe(+).CO(2) + O(2)) = (2.16 +/- 0.35) x 10(-10), k(Fe(+).N(2) + H(2)O) = (1.25 +/- 0.14) x 10(-9) and k(Fe(+).O(2) + H(2)O) = (8.79 +/- 1.30) x 10(-10) cm(3) molecule(-1) s(-1), which are all between 36 and 52% of their theoretical upper limits calculated from long-range capture theory. Finally, the role of these reactions in the chemistry of meteor-ablated iron in the upper atmosphere is discussed. The removal rates of Fe(+) by N(2), O(2), CO(2) and H(2)O at 90 km altitude are approximately 0.1, 0.07, 3 x 10(-4) and 1 x 10(-6) s(-1), respectively. The initially formed Fe(+).N(2) and Fe(+).O(2) are converted into the H(2)O complex at approximately 0.05 s(-1). Fe(+).H(2)O should therefore be the most abundant single-ligand Fe(+) complex in the mesosphere below 90 km.  相似文献   

3.
Thermoluminescence properties of the Eu2+-, R3+-doped calcium aluminate materials, CaAl2O4:Eu2+,R3+, were studied above room temperature. The trap depths were estimated with the aid of the preheating and initial rise methods. The seemingly simple glow curve of CaAl2O4:Eu2+ peaking at ca. 80 degrees C was found to correspond to several traps. The Nd3+ and Tm3+ ions, which enhance most the intensity of the high-temperature TL peaks, form the most suitable traps for intense and long-lasting persistent luminescence, too. The location of the 4f and 5d ground levels of the R3+ and R2+ ions were deduced in relation to the band structure of CaAl2O4. No clear correlation was found between the trap depths and the R3+ or R2+ level locations. The traps may thus involve more complex mechanisms than the simple charge transfer to (or from) the R3+ ions. A new persistent luminescence mechanism presented is based on the photoionization of the electrons from Eu2+ to the conduction band followed by the electron trapping to an oxygen vacancy, which is aggregated with a calcium vacancy and a R3+ ion. The migration of the electron from one trap to another and also to the aggregated R3+ ion forming R2+ (or R3+-e-) is then occurring. The reverse process of a release of the electron from traps to Eu2+ will produce the persistent luminescence. The ability of the R3+ ions to trap electrons is probably based on the different reduction potentials and size of the R3+ ions. Hole trapping to a calcium vacancy and/or the R3+ ion may also occur. The mechanism presented can also explain why Na+, Sm3+, and Yb3+ suppress the persistent luminescence.  相似文献   

4.
The interactions of Al2O3, CeO2, Pt/Al2O3, and Pt/CeO2 films with SO2, SO2 + H2O, SO2 + O2, and SO2 + O2 + H2O in the temperature range 300–673 K at the partial pressures of SO2, O2, and H2O equal to 1.5 × 102, 1.5 × 102, and 3 × 102 Pa, respectively, were studied using X-ray photoelectron spectroscopy. The formation of surface sulfite at T 473 K (the S 2p 3/2 binding energy (E b) is 167.5 eV) and surface sulfate at T 573 K (E b = 169.2 eV) was observed in the reactions of Al2O3 and CeO2 with SO2. The formation of sulfates on the surface of CeO2 occurred much more effectively than in the case of Al2O3, and it was accompanied by the reduction of Ce(IV) to Ce(III). The formation of aluminum and cerium sulfates and sulfites on model Pt/Al2O3 and Pt/CeO2 catalysts occurred simultaneously with the formation of surface platinum sulfides (E b of S 2p 3/2 is 162.2 eV). The effects of oxygen and water vapor on the nature and yield of sulfur-containing products were studied.  相似文献   

5.
The room-temperature stable CI3+ salts [CI3+[pftb](-)1 and [CI3]+[al-f-al](-) 2([pftb](-) = [Al(OC(CF3)3)4](-); [al-f-al](-) = [((CF3)3CO)3Al-F-Al(OC(CF3)3)3](-)) were prepared in quantitative yields from purified CI4 and the corresponding silver aluminates with total exclusion of light (NMR, IR, UV-VIS, X-ray diffraction). The isolated CI(3)(+) cation is trigonal planar with a sum of <(I-C-I) = 360.0 degrees (1) and 359.9 degrees (2). Attempts to prepare CHI2+ and CH2I+ salts from CHI3 or CH2I2/Ag[pftb] mixtures remained unsuccessful; the reaction with CH2I2 leads to the formation of the adduct [Ag(CH2I2)3]+[pftb](-)3, while for HCI3, dismutation with formation of 1 as well as 3 was observed. All particles were also calculated at the MP2/TZVPP level to predict the vibrational and electronic spectra as well as to calculate the Gibbs free energies of all reactions (DeltaG degrees , gas phase and CH2Cl2 solution). Quantum chemical calculations were also used to investigate the stability of the [pftb](-) anion against the electrophilic attack of the CX3+ and CHnX3-n+ cations (X = F-I, n = 1-3). The strength of the Lewis acidity of these cations and of the isoelectronic boron halides BX()and BHnX3-n have been established on the basis of their fluoride ion affinities (FIAs). The FIAs of the carbon and the boron containing compounds show opposite trends, with fluorinated halomethyl cations being stronger acids than their heavier congeners but iodinated holoboranes being stronger acids than their lighter homologues.  相似文献   

6.
用密度泛函理论(DFT)B3LYP方法,取3-21G**基组研究了气相反应Br2+2HI=2HBr+I2的机理,求得一系列四中心和三中心的过渡态.双分子基元反应Br2+HI→HBr+IBr和IBr+HI→I2+HBr的活化能(81.02和121.08 kJ•mol-1)小于Br2、HI和IBr的解离能(249.21、320.16和232.42 kJ•mol-1),故从理论上证明了标题反应将优先以分子与分子作用形式分两步完成.同时发现I原子与Br2分子反应生成较稳定的IBr2是一个无能垒过程,IBr2分解为IBr和Br原子的能垒为70.88 kJ•mol-1.  相似文献   

7.
The interaction of VO(2+) ion with ligands of biological interest that are present in important metabolic pathways--2-oxopropanoic acid (pyruvic acid, pyrH), 3-hydroxy-2-oxopropanoic acid (3-hydroxypyruvic acid, hydpyrH), oxobutanedioic acid (oxalacetic acid, oxalH(2)), (S)-hydroxybutanedioic acid (l-malic acid, malH(2)), and 2,3-dihydroxy-(E)-butanedioic acid (dihydroxyfumaric acid, dhfH(2))--was described. Their complexing capability was compared with that of similar ligands: 3-hydroxy-2-butanone (hydbut) and 3,4-dihydroxy-3-cyclobutene-1,2-dione (squaric acid, squarH(2)). All of these ligands (except l-malic acid) exhibit keto-enol tautomerism, and the presence of a metal ion can influence such an equilibrium. The different systems were studied with electron paramagnetic resonance (EPR) and UV-vis spectroscopies and with pH potentiometry. Density functional theory (DFT) methods provide valuable information on the relative energy of the enol and keto forms of the ligands both in the gas phase and in aqueous solution, on the geometry of the complexes, and on EPR and electronic absorption parameters. The results show that most of the ligands behave like α-hydroxycarboxylates, forming mono- and bis-chelated species with (COO(-), O(-)) coordination, demonstrating that the metal ion is able to stabilize the enolate form of some ligands. With dihydroxyfumaric acid, the formation of a non-oxidovanadium(IV) complex, because of rearrangement of dihydroxyfumaric to dihydroxymaleic acid (dhmH(2)), can be observed. With 3-hydroxy-2-butanone and 3,4-dihydroxy-3-cyclobutene-1,2-dione, complexation of VO(2+) does not take place and the reason for this behavior is explained by chemical considerations and computational calculations.  相似文献   

8.
A modular approach to the construction of monocationic quaternary N-heteroaromatic frameworks was developed capitalizing on a direct pyridine-type nitrogen quaternization followed by metal-catalyzed [2+2+2] cycloaddition with gaseous acetylene. The flexibility of the route is demonstrated on 12 diverse scaffolds based on pyridinium, quinolinium, thiazolium, benzothiazolium, imidazolium, and pyrimidinium. Electrochemical study revealed a quinolinium redox system with two electrochemically distinct forms that are interconverted by a homogeneous chemical reaction triggered by fast electron transfers (reduction at -0.7 V and oxidation at -0.05 V).  相似文献   

9.
The deprotonation of Cu2+ complexes with uracil, 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil has been investigated by means of B3LYP/ 6-311+G(2df,2p)//6-31G(d) calculations. The most stable [(uracil-H)Cu]+ and [(thiouracil-H)Cu]+ complexes correspond to bidentate structures in which Cu interacts with the deprotonated ring-nitrogen atom and with the oxygen or the sulfur atom of the adjacent carbonyl or thiocarbonyl group. For 2- and 4-thiouracil derivatives, the structures in which the metal cation interacts with the thiocarbonyl group are clearly favored with respect to those in which Cu interacts with the carbonyl group. This is at variance with what was found to be the most stable structure of the corresponding Cu2+ complexes, where association to the carbonyl oxygen was always preferred over the association to the thiocarbonyl group. The [(uracil-H)Cu]+ and [(thiouracil-H)Cu]+ complexes can be viewed as the result of Cu+ attachment to the uracil-H and thiouracil-H radicals formed by the deprotonation of the corresponding uracil+* and thiouracil+* radical cations. As a matter of fact their relative stability is dictated by the intrinsic stability of the corresponding uracil-H and thiouracil-H radical and by the fact that, in general, the N3-deprotonated site is a better electron donor than the N1. In all complexes, the bonding of Cu both to nitrogen and sulfur and to nitrogen and oxygen has a significantly large covalent character.  相似文献   

10.
An in-depth study of the cobalt-catalyzed [2+2+2] cycloaddition between yne-ynamides and nitriles to afford aminopyridines has been carried out. About 30 nitriles exhibiting a broad range of steric demand and electronic properties have been evaluated, some of which open new perspectives in metal-catalyzed arene formation. In particular, the use of [CpCo(CO)(dmfu)] (dmfu=dimethyl fumarate) as a precatalyst made possible the incorporation of electron-deficient nitriles into the pyridine core. Modification of the substitution pattern at the yne-ynamide allows the regioselectivity to be switched toward 3- or 4-aminopyridines. Application of this synthetic methodology to the construction of the aminopyridone framework using a yne-ynamide and an isocyanate was also briefly examined. DFT computations suggest that 3-aminopyridines are formed by formal [4+2] cycloaddition between the nitrile and the intermediate cobaltacyclopentadiene, whereas 4-aminopyridines arise from an insertion pathway.  相似文献   

11.
Chen H  Ren J 《The Analyst》2012,137(8):1899-1903
A new method for quenching kinetic discrimination of Fe(2+) and Fe(3+), and sensitive detection of trace amount of Fe(2+) was developed by using synchronous fluorescence scan technique. The principle of this assay is based on the quenching kinetic discrimination of Fe(2+) and Fe(3+) in CePO(4):Tb(3+) nanocrytals-H(2)O(2) hybrid system and the Fenton reaction between Fe(2+) and H(2)O(2). Stable, water-soluble and well-dispersible CePO(4):Tb(3+) nanocrystals were synthesized in aqueous solutions, and characterized by transmission electron microscopy (TEM) and electron diffraction spectroscopy (EDS). We found that both Fe(2+) and Fe(3+) could quench the synchronous fluorescence of CePO(4):Tb(3+) nanocrytals-H(2)O(2) system, but their quenching kinetics velocities were quite different. In the presence of Fe(3+), the synchronous fluorescent intensity was unchanged after only one minute, but in the presence of Fe(2+), the synchronous fluorescent intensity decreased slowly until 28 min later. The Fenton reaction between Fe(2+) and H(2)O(2) resulted in hydroxyl radicals which effectively quenched the synchronous fluorescence of the CePO(4):Tb(3+) nanocrystals due to the oxidation of Ce(3+) into Ce(4+) by hydroxyl radicals. Under optimum conditions, the linear range for Fe(2+) is 3 nM-2 μM, and the limit of detection is 2.0 nM. The method was used to analyze water samples.  相似文献   

12.
The kinetics of the NCCO + NO(2) reaction was studied by transient infrared laser absorption spectroscopy. The total rate constant of the reaction was measured to be k = (2.1 ± 0.1) × 10(-11) cm(3) molecule(-1) s(-1) at 298 K. Detection of products and consideration of possible secondary chemistry shows that CO(2) + NO + CN is the primary product channel. The rate constants of the NCCO + CH(4) and NCCO + C(2)H(4) reactions were also measured, obtaining upper limits of k (NCCO + CH(4)) ≤ 7.0 × 10(-14) cm(3) molecule(-1) s(-1) and k (NCCO + C(2)H(4)) ≤ 5.0 × 10(-15) cm(3) molecule(-1) s(-1). Ab initio calculations on the singlet and triplet potential energy surfaces at B3LYP/6-311++G**//CCSD(T)/6-311++G** levels of theory show that the most favorable reaction pathway occurs on the singlet surface, leading to CO(2) + NO + CN products, in agreement with experiment.  相似文献   

13.
Full configuration interaction (FCI) has been used in conjunction with the lithium [6s5p3d1f] (Iron, M. A.; et al. Mol. Phys. 2004, 101, 1345) and hydrogen aug-cc-pVTZ basis sets to construct an 83-point potential energy surface of the 1A1 ground state of 7LiH2+. Vibrational and rovibrational wave functions of the (6,7)LiH2+, (6,7)LiHD+, and (6,7)LiD2+ ground states were calculated variationally using an Eckart-Watson Hamiltonian. For (7)LiD2+, rovibrational transition frequencies for K = 0, 1, 2 and J < or = 10 are within ca. 0.1% of recent experimental values (Thompson, C. D.; et al. J. Chem. Phys. 2006, 125, 044310). A 47-point FCI dipole moment surface was embedded in the rovibrational Hamiltonian to calculate vibrational and rovibrational radiative properties. At 296 K, with v < or = 4 and J < or = 4, the 2(02) <-- 3(03) rotational transition in the |001> band was found to have the greatest spectral intensity with respect to the ground electronic states of (6,7)LiH2+, (6,7)LiHD+, and (6,7)LiD2+. In each case, the most intense rovibrational transitions have been assigned unequivocally using the J, Ka, Kc assignment scheme.  相似文献   

14.
水热法制备Fe3+改性的SnO2纳米颗粒   总被引:1,自引:0,他引:1  
采用水热法制备了Fe3+改性的SnO2纳米颗粒, 通过XRD、BET、TEM、FT-IR和紫外-可见漫反射光谱(DRS)对其结构和光学性质进行研究. 结果表明, 水热过程实现了氧化锡的直接晶化, 产物为金红石结构, Fe3+进入SnO2的晶格之中形成固溶体. 这种方法制备的Fe3+改性的SnO2纳米颗粒为单分散状态, 粒径分布均匀, 纯的SnO2未焙烧前平均粒径为6.0 nm, 随着Fe3+添加量的增大, 样品的粒径减小. BET显示纯的SnO2样品比表面积为206.1 m2•g−1, 随着Fe3+添加量增大, 产物的比表面积增大, 同时样品的紫外-可见吸收发生红移.  相似文献   

15.
Existing measurements of the collision-induced rototranslational absorption spectra of gaseous mixtures of methane with helium, hydrogen, or nitrogen are compared to theoretical calculations, based on refined multipole-induced and dispersion force-induced dipole moments of the interacting molecular pairs CH4-He, CH4-H2, and CH4-N2. In each case the measured absorption exceeds the calculations substantially at most frequencies. We present the excess absorption spectra, that is the difference of the measured and the calculated profiles, of these supramolecular CH4-X systems at various gas temperatures. The excess absorption spectra of CH4-X pairs differ significantly for each choice of the collision partner X, but show common features (spectral intensities and shape) at frequencies from roughly 200 to 500 cm(-1). These excess spectra seem to defy modeling in terms of ad hoc exchange force-induced dipole components attempted earlier. We suggest that besides the dipole components induced by polarization in the electric molecular multipole fields and their gradients, and by exchange and dispersion forces, other dipole induction mechanisms exist in CH4-X complexes that presumably are related to collisional distortion of the CH4 molecular frame.  相似文献   

16.
A new method of simultaneous determination of Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ is proposed here by using the second-derivative spectrophotometry method. In pH=10.35 Borax-NaOH buffer, using meso-tetra (3-methoxyl-4-hydroxylphenyl) porphyrin ([T-(3-MO-4-HP)P]) as chromomeric reagent, micelle solution was formed after Tween-80 surfactant was added into the solution containing Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ ions. The original absorption spectrum of the above complexes was obtained after heating in the boiling water for 25 min. The second-derivative absorption peaks of five metal-porphyrin complexes can be separated from the original absorption spectrum by using chemometric tool. In this way, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ ions can be determined simultaneously. Under the optimal conditions, the linear ranges of the calibration curve were 0-0.60, 0-0.60, 0-0.40, 0-0.80 and 0-0.48 μg mL(-1) for Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+, respectively. The molar absorptivity of these color systems were 1.38×10(5), 1.01×10(5), 3.24×10(5), 1.07×10(5) and 1.29×10(5)Lmol(-1)cm(-1). The method developed in this paper has advantages in selectivity, sensitivity, operation and can effectively resolve spectra overlapping problem. This method has been applied to determine the real samples with satisfactory results.  相似文献   

17.
The reflected shock tube technique with multipass absorption spectrometric detection of OH-radicals at 308 nm, corresponding to a total path length of approximately 2.8 m, has been used to study the reaction CH3 + O2 CH2O + OH. Experiments were performed between 1303 and 2272 K, using ppm quantities of CH3I (methyl source) and 5-10% O2, diluted with Kr as the bath gas at test pressures less than 1 atm. We have also reanalyzed our earlier ARAS measurements for the atomic channel (CH3 + O2 --> CH3O + O) and have compared both these results with other earlier studies to derive a rate expression of the Arrhenius form. The derived expressions, in units of cm3 molecule(-1) s(-1), are k = 3.11 x 10(-13) exp(-4953 K/T) over the T-range 1237-2430 K, for the OH-channel, and k = 1.253 x 10(-11) exp(-14241 K/T) over the T-range 1250-2430 K, for the O-atom channel. Since CH2O is a major product in both reactions, reliable rates for the reaction CH2O + O2 --> HCO + HO2 could be derived from [OH]t and [O]t experiments over the T-range 1587-2109 K. The combined linear least-squares fit result, k = 1.34 x 10(-8) exp(-26883 K/T) cm3 molecule(-1) s(-1), and a recent VTST calculation clearly overlap within the uncertainties in both studies. Finally, a high sensitivity for the reaction OH + O2 --> HO2 + O was noted at high temperature in the O-atom data set simulations. The values for this obtained by fitting the O-atom data sets at later times (approximately 1.2 ms) again follow the Arrhenius form, k = 2.56 x 10(-10) exp(-24145 K/T) cm3 molecule(-1) s(-1), over the T-range, 1950-2100 K.  相似文献   

18.
The rate constant for the NCN + NO 2 reaction has been measured by a laser photolysis/laser-induced fluorescence technique in the temperature range of 260-296 K at pressures between 100 and 500 Torr with He and N 2 as buffer gases. The NCN radical was produced from the photolysis of NCN 3 at 193 nm and monitored by laser-induced fluorescence with a dye laser at 329.01 nm. The rate constant was found to increase with pressure but decrease with temperature, indicating that the reaction occurs via a long-lived intermediate stabilized by collisions with buffer gas. The reaction mechanism and rate constant are also theoretically predicted for the temperature range of 200-2000 K and the He and N 2 pressure range of 10 (-4) Torr to 1000 atm based on dual-channel Rice-Ramsperger-Kassel-Marcus (RRKM) theory with the potential energy surface evaluated at the G2M//B3LYP/6-311+G(d) level. In the low-temperature range (<700 K), the most favorable reaction is the barrierless association channel that leads to the intermediate complex (NCN-NO 2). At high temperature, the direct O-abstraction reaction with a barrier of 9.8 kcal/mol becomes the dominant channel. The rate constant calculated by RRKM theory agrees reasonably well with experimental data.  相似文献   

19.
熊忠华  陈琦  郑秀梅  魏锡文 《化学学报》2005,63(7):572-576,F005
首先用密度泛函理论(DFT)方法研究了铀酰和钚酰离子的几何与电子结构,计算结果与实验基本符合,表明DFT方法也能用于含铀和钚重原子的化合物计算.然后对铀酰和钚酰水合离子的几何构型、Mulliken集居数分布以及铀酰(钚酰)与配体水分子的结合能进行计算,计算结果表明UO22+·5H2O和PuO22+·5H2O分别为铀酰和钚酰系列水合离子中最稳定的配合物.  相似文献   

20.
过渡金属;超氧离子;白血病;肺癌;2-乙酰吡啶吖嗪及其与Co2+、Ni2+、Fe3+、Zn2+配合物的合成和生物活性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号