首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frozen solutions of H2SO4 and acid 7 M NaClO4 containing Fe2+ ions have been exposed to X rays and UV light and examined by EPR methods. It is concluded that the H atoms formed in UV-irradiated acid perchlorate matrices do not have mobile electrons as precursors. Thus no trapped electrons are found after UV irradiation even though these matrices provide efficient traps for electrons. The effect of the electron scavenger NO?3 is identical in UV- and X-irradiated matrices and largest in the H2SO4 matrix. Thus it seems that NO?3 acts on a similar H-atom precursor in the two cases, and that this precursor may be an excited CTTS state, rather than a mobile electron. The absence of allyl alcohol scavening effect on H atoms produced by UV light in the perchlorate matrix indicates that this H-atom scavenger does not interact with the CTTS state, and that the H atom is trapped in the vicinity of the Fe2+ ion where it was formed. The presence of small amounts of Fe2+ ions (< 10?3 M) in the matrices causes a marked decrease in the spin—lattice relaxation time of the trapped hydrogen atoms as well as a decrease in the intensities of the satellite lines relative to the main hydrogen lines.  相似文献   

2.
Pulse radiolysis of deuterated aqueous LiCl glasses at temperatures in the range 6 K to 70 K show that the yield G(e?IR) of infrared absorbing electrons (e?IR) increases sharply as the temperature is lowered when [LiCl] ? 10 M. Under these conditions the yield of visible absorbing electrons (e?vis) decreases, but to a lesser extent. When [LiCl] ? 8 M, G(e?IR) and G(e?vis) are both much less dependent on temperature. These data suggest that at very low temperatures e?IR are not trapped exclusively in a purely aqueous environment.  相似文献   

3.
Two groups of infrared absorptions common to experiments in which samples of HCCl2 isolated in an argon matrix at 14 K are exposed to vacuum ultraviolet radiation or to electrons produced by ultraviolet irradiation of an alkali metal, as well as to experiments in which the Ar:HCCl2F sample is codeposited with a beam of argon atoms excited in a microwave discharge, have been assigned to anions produced upon associative and dissociative electron capture by HCCI2F. Detailed isotopic substitution studies suggest that these anions are (Cl2C)H?F?, representing a unique type of hydrogen bonding, and HCCIF?. The HCClF? anion photodecomposes in the 345–250nm spectral region, but the products of its photodecomposition have not been identified. Both CCl2 and Cl2CF are also produced in the discharge experiments, but there is no evidence for the production of HCF. Mechanisms for the formation of ion products by electron capture and by exposure of HCCl2F to radiation or to excited argon atoms of energy equal to or less than 11.8 eV are considered.  相似文献   

4.
Polyethylene glycols react with CH3OCH2+ ions from dimethyl ether to form [M + 13]+ products. The [M + 13]+ ions are stabilized by intramolecular interactions involving the internal ether oxygen atoms and the terminal methylene group. Collisionally activated dissociation (CAD), including MSn and deuterium labeling experiments show that fragmentation reactions involving intramolecular cyclization are predominant. Scrambling of hydrogen and deuterium atoms in the ion-molecule reaction products is not indicated. The CAD spectra of the [M + 13]+ ions provide unambiguous assignment of the glycol size.  相似文献   

5.
It is highly desirable but challenging to optimize the structure of photocatalysts at the atomic scale to facilitate the separation of electron–hole pairs for enhanced performance. Now, a highly efficient photocatalyst is formed by assembling single Pt atoms on a defective TiO2 support (Pt1/def‐TiO2). Apart from being proton reduction sites, single Pt atoms promote the neighboring TiO2 units to generate surface oxygen vacancies and form a Pt‐O‐Ti3+ atomic interface. Experimental results and density functional theory calculations demonstrate that the Pt‐O‐Ti3+ atomic interface effectively facilitates photogenerated electrons to transfer from Ti3+ defective sites to single Pt atoms, thereby enhancing the separation of electron–hole pairs. This unique structure makes Pt1/def‐TiO2 exhibit a record‐level photocatalytic hydrogen production performance with an unexpectedly high turnover frequency of 51423 h?1, exceeding the Pt nanoparticle supported TiO2 catalyst by a factor of 591.  相似文献   

6.
Matrix‐assisted laser desorption/ionization in‐source decay (MALDI‐ISD) induces N–Cα bond cleavage via hydrogen transfer from the matrix to the peptide backbone, which produces a c′/z? fragment pair. Subsequently, the z? generates z′ and [z + matrix] fragments via further radical reactions because of the low stability of the z?. In the present study, we investigated MALDI‐ISD of a cyclic peptide. The N–Cα bond cleavage in the cyclic peptide by MALDI‐ISD produced the hydrogen‐abundant peptide radical [M + 2H]+? with a radical site on the α‐carbon atom, which then reacted with the matrix to give [M + 3H]+ and [M + H + matrix]+. For 1,5‐diaminonaphthalene (1,5‐DAN) adducts with z fragments, post‐source decay of [M + H + 1,5‐DAN]+ generated from the cyclic peptide showed predominant loss of an amino acid with 1,5‐DAN. Additionally, MALDI‐ISD with Fourier transform‐ion cyclotron resonance mass spectrometry allowed for the detection of both [M + 3H]+ and [M + H]+ with two 13C atoms. These results strongly suggested that [M + 3H]+ and [M + H + 1,5‐DAN]+ were formed by N–Cα bond cleavage with further radical reactions. As a consequence, the cleavage efficiency of the N–Cα bond during MALDI‐ISD could be estimated by the ratio of the intensity of [M + H]+ and [M + 3H]+ in the Fourier transform‐ion cyclotron resonance spectrum. Because the reduction efficiency of a matrix for the cyclic peptide cyclo(Arg‐Gly‐Asp‐D‐Phe‐Val) was correlated to its tendency to cleave the N–Cα bond in linear peptides, the present method could allow the evaluation of the efficiency of N–Cα bond cleavage for MALDI matrix development. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Analyses of a series of nitroaromatic compounds using fast atom bombardment (FAB) mass spectrometry are discussed. An interesting ion-molecule reaction leading to [M + O ? H]? ions is observed in the negative ion FAB spectra. Evidence from linked-scan and collision-induced dissociation spectra proved that [M + O ? H]? ions are produced by the following reaction: M + NO2? → [M + NO2]? → [M + O ? H]?. These experiments also showed that M ions are produced in part by the exchange of an electron between M and NO2? species. All samples showed M, [M ? H]? or both ions in their negative ion FAB spectra. Not all analytes studied showed either [M + H]+ and/or M+˙ in the positive ion FAB spectra. No M+˙ ions were observed for ions having ionization energies above ~9 eV.  相似文献   

8.
The hydrogen peroxide is oxidized at + 1.5 V vs. SCE at a glassy carbon electrode of the wall-jet type. The samples are diluted about 100 times in a dispersion coil before entering the amperometric detector. The calibration curve is linear from 10?4 to 1 M H2O2, when 5-μl samples are used. With 50-μl samples the detection limit decreases to 10?6 M H2O2. Neither metal ions (Cu2+, Zn2+, Ni2+, Al3+) up to 0.5 M nor changes in the sulfuric acid concentration of the samples between 0.1 and 1 M interfere with the hydrogen peroxide determination. About 75 samples can be analyzed per hour.  相似文献   

9.
Abstract— Neutral, acidic or basic frozen aqueous solutions of aromatic amino acids undergo photoionisation under u.v. irradiation, at 77°K. In neutral or basic solutions, photo-ejected electrons are trapped in the solvent matrix and exhibit a characteristic absorption band in the visible region. In acidic solutions electrons are trapped by protons and ESR signal spectrum of hydrogen atoms may be observed. Hydrogen atoms are also produced in low yield in neutral or basic frozen aqueous solutions, u.v. irradiated at 77°K. In basic media the ESR spectrum of 0- radical ions is observed. Kinetic studies as a function of light intensity show that photoionisation takes place after absorption of a second photon by the phosphorescent molecule in its lowest triplet state. Recombination of trapped electrons in neutral or basic solutions may be induced using secondary excitation with visible light. In all instances we could record the absorption spectrum of photolytic products of aromatic amino acids and polypeptides which are u.v. irradiated at 77°K.  相似文献   

10.
Electronically excited NF in both the a1Δ and b 1Σ+ states hasbeen observed from the reaction of fluorine atoms with HN3. The results suggest that fluorine atoms first abstract the hydrogen atom from HN3, then react with the remaining N3 to form NF(a1Δ). NF*(b1Σ+) is produced by a subsequent energy pooling reaction between NF(a1Δ) and vibrationally excited HF. The rate of the F + N3 reaction is estimated to be ≈ 1012 and 3 mole?1 s?1.  相似文献   

11.
The ratio [M ? D]/{[M-D] + [M ? H]} in the 70 eV mass spectra of six deuterated 3-methylthiophenes has been determined. From these values the mole fractions of the molecular ions that lose hydrogen atoms specifically from the various positions of the molecule were calculated, as well as the mole fraction in which the hydrogen atoms are fully scrambled before hydrogen elimination. It appears that hydrogen atoms are mainly lost from a fully scrambled [C5H6S]+· ion and from the α-position of the original molecular ion. A deuterium isotope effect of 1·60 to 1·72 was calculated for the hydrogen elimination. The reaction was also studied at low electron energies. In order to determine the degree of scrambling in the [C5H5S]+ ions, some decomposition reactions of this ion were investigated.  相似文献   

12.
The interaction of hydrogen atoms with a variety of alkali metal and alkaline-earth metal salts results not only in the recombination of these atoms but also in the displacement, into the gas phase, of free radicals (CaCl·(A 1 P 1/2, B 2 S +) and CaF·(A 2 P)) and metal atoms, including their excited species, which are detected spectroscopically. Transmission spectra indicate that the NaCl surface undergoes metallization when treated with a high-frequency discharge and a rarefied hydrogen flame. Combustion is affected by the gas-phase hydrogen atoms involved in the chain reaction and by the varying composition and properties of the surface. The concentration of Na atoms over the NaCl surface at 770 K is 109?1011 cm?3 in a stream of H atoms at 1 Torr and in the 2H2 + O2 flame at 4 Torr. The concentration of sodium atoms in the 2 P 3/2 and 2 P 1/2 excited states is ~5 × 106?5 × 108 cm?3. The role of the discovered reactions in combustion, pyrolysis, and plasma chemistry is discussed.  相似文献   

13.
The reactions of the carbonate radical anion (CO3 . ?) with vitamin B12 derivatives were studied by pulse radiolysis. The carbonate radical anion directly oxidizes the metal center of cob(II)alamin quantitively to give hydroxycobalamin, with a bimolecular rate constant of 2.0×109 M ?1 s?1. The reaction of CO3 . ? with hydroxycobalamin proceeds in two steps. The second‐order rate constant for the first reaction is 4.3×108 M ?1 s?1. The rate of the second reaction is independent of the hydroxycobalamin concentration and is approximately 3.0×103 s?1. Evidence for formation of corrinoid complexes differing from cobalamin by the abstraction of two or four hydrogen atoms from the corrin macrocycle and lactone ring formation has been obtained by ultra‐high‐performance liquid chromatography/high‐resolution mass spectrometry (UHPLC/HRMS). A mechanism is proposed in which abstraction of a hydrogen atom by CO3 . ? from a carbon atom not involved in the π conjugation system of the corrin occurs in the first step, resulting in formation of a CoIII C‐centered radical that undergoes rapid intramolecular electron transfer to form the corresponding CoII carbocation complex for about 50 % of these complexes. Subsequent competing pathways lead to formation of corrinoid complexes with two fewer hydrogen atoms and lactone derivatives of B12. Our results demonstrate the potential of UHPLC combined with HRMS in the separation and identification of tetrapyrrole macrocycles with minor modifications from their parent molecule.  相似文献   

14.
The trapping of electrons and styrene cations and anions has been studied in a methylcyclohexane glass by the techniques of deferred luminescence. Radiothermoluminescence curves consist of two peaks, at 90 and 95°K, in this matrix. The second peak increases linearly with styrene concentration up to 2 × 10?2M when it reaches a constant value, whereas the first peak increases from 10?4 to 10?3M and then decreases at higher concentrations and is not discernible at concentrations above 10?2M. We propose two mechanisms which are qualitatively consistent with this behavior and are based essentially on the recombination of styrene cations with thermally detrapped electrons in the first peak and with anions in the second peak. Photothermoluminescence (i.e., thermoluminescence after photoionization with ultraviolet light) similarly consists of the 90 and 95°K peaks for a 10?3M solution and of the 95° peak alone for a 10?d M solution. Radiophotoluminescence excitation spectra at 77°K, corresponding to absorption spectra of trapped electrons and styrene anions, show that anions are the predominant negative species in 10?2 molar solution, and trapped electrons in 10?3 molar solution. Spectral analysis of radiothermoluminescenece shows the presence of two emission bands, one of which is identical with styrene fluorescence excited by the 254 Nm mercury line (λmax = 292, 302, 307, and 317 Nm). The other band has three fairly poorly resolved maxima at 474, 486 and 496 nm and seems to correspond to the fluorescence of C6H5?H-CH3 radicals formed during radiolysis.  相似文献   

15.
Highly excited 2-butyl radicals have been generated by addition of hot hydrogen atoms to but-2-ene. Atoms of initial energy 130 kJ mol?1 and 161 kJ mol?1 were produced by photolysis of H2S. Rates of decomposition of the highly excited 2-butyl radicals were monitored by analysis of stabilization and decomposition products, and the extent of energy-loss of the hydrogen atoms in nonreactive collisions assessed by measuring the effect of added xenon on product yields. A model involving the cross-section for the addition reaction, energy transfer in nonreactive collisions between hydrogen atoms and but-2-ene, RRKM rate constants for decomposition of excited 2-butyl radicals, and collisional energy transfer from the radicals, has been used to calculate product yields for comparison with experimental values. It is concluded that the cross-section for addition of hydrogen atoms of energy about 130 kJ mol?1 to but-2-ene is 0.055 ± 0.028 nm2. This value is compatible with the A factor for the thermal addition reaction.  相似文献   

16.
A delicate application of the EPR linewidth theory to the experimentally measured trapped electron (e??) linewidths in three kinds of isotopic 3-methyl-pentane molecules (3MP) concludes that the electron traps are formed by the protons regardless of their relative positions in the molecule. With the cavity radius of <2 Å, the trapped electron charge density in these nonpolar hydrocarbon glasses is shown to be highly delocalized. The slower thermal decay rate of e?? 3MPd14 than in 3MPh14 is most likely related to the deeper trap depth in the former than in the latter leading to a predicted blue shift absorption peak for e?? in 3MPd14 relative to that in 3MPh14 The farther travel distance for mobile electrons before being trapped in these matrices than in polar matrices is attributed to the low trapping cross section rather than a low trap density. Consistency of the empirical cavity radius with the predicted value from current theoretical basis is also cited.  相似文献   

17.
孟祥军  王秀阁  和芹  王磊 《化学通报》2020,83(8):755-760
为了认识氢气生物学效应的分子机制,采用量子化学的M06-2X/6-311+G(d,p)和CCSD(t)/aug-cc-pVTZ方法模拟了人体条件(310K、液相)下氢分子与超氧阴离子自由基的反应机理。研究表明,反应的吉布斯自由能变化值为117.2kJ·mol~(-1),活化自由能垒为156.2kJ·mol~(-1),从热力学及动力学角度该反应都不容易进行。然后从电子结构和轨道作用层面对反应的微观机制进行了探讨,发现从反应物变为过渡态过程中,复合物轨道的组成和轨道能级发生显著变化(尤其是第8号轨道能级升高最多,达到2.73eV),O~-_2片段向H_2片段的电子转移数增加了0.1760个,并且转移的电子主要集居于第8号轨道,这削弱了H_2片段两个H原子间的化学键,也是反应活化能的主要来源。  相似文献   

18.
Detection of atoms by mass spectrometry has been used to study the reactions of hydrogen azide, HN3, with H atoms and active nitrogen, in a fast flow reactor at pressures of about 1 torr. Stoichiometry and products of the H + HN3 reaction have been determined and the rate constant of the initial step, assumed to be H + HN3 → NH2 + N2, was found to be 2.54 × 10?11 exp (?4600/RT) cm3 molecule?1 s?1, in the temperature range of 300–460K. The formation of NH3 and H2 products has been discussed from the different secondary steps which may occur in the mechanism. For the reaction of active nitrogen with HN3, evidence has been found for the participation of excited nitrogen molecules produced by a microwave discharge through molecular nitrogen. The influence of excited nitrogen molecules has been reduced by lowering the gas flow velocity. It was then possible to study the N + HN3 reaction for which the rate constant of the initial step was found to be 4.9 × 10?15 cm3 molecule?1 s?1 at room temperature. Finally, the occurrence of these elementary reactions has been discussed in the mechanism of the decomposition flame of HN3.  相似文献   

19.
A detailed first‐principle DFT M06/6‐311++G(d.p) study of dehydrogenation mechanism of trimeric cluster of lithium amidoborane is presented. The first step of the reaction is association of two LiNH2BH3 molecules in the cluster. The dominant feature of the subsequent reaction pathway is activation of H atom of BH3 group by three Li atoms with formation of unique Li3H moiety. This Li3H moiety is destroyed prior to dehydrogenation in favor of formation of a triangular Li2H moiety, which interacts with protic H atom of NH2 group. As a result of this interaction, Li2H2 moiety is produced. It features N?? H+? H? group suited near the middle plane between two Li+ in the transition state that leads to H2 release. The transition states of association and hydrogen release steps are similar in energy. It is concluded that the trimer, (LiNH2BH3)3, is the smallest cluster that captures the essence of the hydrogen release reaction. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
Amorphous phosphorus nitride imide nanotubes (HPN) are reported as a novel substrate to stabilize materials containing single‐metal sites. Abundant dangling unsaturated P vacancies play a role in stabilization. Ruthenium single atoms (SAs) are successfully anchored by strong coordination interactions between the d orbitals of Ru and the lone pair electrons of N located in the HPN matrix. The atomic dispersion of Ru atoms can be distinguished by X‐ray absorption fine structure measurements and spherical aberration correction electron microscopy. Importantly, Ru SAs@PN is an excellent electrocatalyst for the hydrogen evolution reaction (HER) in 0.5 m H2SO4, delivering a low overpotential of 24 mV at 10 mA cm?2 and a Tafel slope of 38 mV dec?1. The catalyst exhibits robust stability in a constant current test at a large current density of 162 mA cm?2 for more than 24 hours, and is operative for 5000 cycles in a cyclic voltammetry test. Additionally, Ru SAs@PN presents a turnover frequency (TOF) of 1.67 H2 s?1 at 25 mV, and 4.29 H2 s?1 at 50 mV, in 0.5 m H2SO4 solution, outperforming most of the reported hydrogen evolution catalysts. Density functional theory (DFT) calculations further demonstrate that the Gibbs free energy of adsorbed H* over the Ru SAs on PN is much closer to zero compared with the Ru/C and Ru SAs supported on carbon and C3N4, thus considerably facilitating the overall HER performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号