首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper considers repositioning empty containers between multi-ports over multi-periods with stochastic demand and lost sales. The objective is to minimize the total operating cost including container-holding cost, stockout cost, importing cost and exporting cost. First, we formulate the single-port case as an inventory problem over a finite horizon with stochastic import and export of empty containers. The optimal policy for period n is characterized by a pair of critical points (A n , S n ), that is, importing empty containers up to A n when the number of empty containers in the port is fewer than A n ; exporting empty containers down to S n when the number of empty containers in the port is more than S n ; and doing nothing, otherwise. A polynomial-time algorithm is developed to determine the two thresholds, that is, A n and S n , for each period. Next, we formulate the multi-port problem and determine a tight lower bound on the cost function. On the basis of the two-threshold optimal policy for a single port, a polynomial-time algorithm is developed to find an approximate repositioning policy for multi-ports. Simulation results show that the proposed approximate repositioning algorithm performs very effectively and efficiently.  相似文献   

2.
In this paper we analyze two single server queueing-inventory systems in which items in the inventory have a random common life time. On realization of common life time, all customers in the system are flushed out. Subsequently the inventory reaches its maximum level S through a (positive lead time) replenishment for the next cycle which follows an exponential distribution. Through cancellation of purchases, inventory gets added until their expiry time; where cancellation time follows exponential distribution. Customers arrive according to a Poisson process and service time is exponentially distributed. On arrival if a customer finds the server busy, then he joins a buffer of varying size. If there is no inventory, the arriving customer first try to queue up in a finite waiting room of capacity K. Finding that at full, he joins a pool of infinite capacity with probability γ (0 < γ < 1); else it is lost to the system forever. We discuss two models based on ‘transfer’ of customers from the pool to the waiting room / buffer. In Model 1 when, at a service completion epoch the waiting room size drops to preassigned number L ? 1 (1 < L < K) or below, a customer is transferred from pool to waiting room with probability p (0 < p < 1) and positioned as the last among the waiting customers. If at a departure epoch the waiting room turns out to be empty and there is at least one customer in the pool, then the one ahead of all waiting in the pool gets transferred to the waiting room with probability one. We introduce a totally different transfer mechanism in Model 2: when at a service completion epoch, the server turns idle with at least one item in the inventory, the pooled customer is immediately taken for service. At the time of a cancellation if the server is idle with none, one or more customers in the waiting room, then the head of the pooled customer go to the buffer directly for service. Also we assume that no customer joins the system when there is no item in the inventory. Several system performance measures are obtained. A cost function is discussed for each model and some numerical illustrations are presented. Finally a comparison of the two models are made.  相似文献   

3.
This paper investigates the effect of permissible delay in payments on ordering policies in a periodic review (s, S) inventory model with stochastic demand. A new mathematical model is developed, which is an extension to that of Veinott and Wagner (Mngt Sci 1965; 11: 525) who applied renewal theory and stationary probabilistic analysis to determine the equivalent average cost per review period. The performance of the model is validated using a custom-built simulation programme. In addition, two distribution-free heuristic methods of reasonable accuracy develop approximate optimal policies for practical purposes based only on the mean and the standard deviation of the demand. Numerical examples are presented with results discussed.  相似文献   

4.
This paper deals with a periodic review inventory system. Methods are discussed for determining the re-order point s of an (s, S) order policy, when a certain service level is required. The results differ from those presented for a (Q, s) model which is usually considered in literature and implemented in practice. Methods are discussed for determining the re-order point of an (s, S) policy when demand is normal or gamma distributed. A numerical investigation demonstrates the applicability of the described methods. In particular, it is shown that these methods are superior to a formula that is implemented in many inventory control systems.  相似文献   

5.
Differentiation of the expression for cost per unit time in a (T, Z) inventory control model with Normal demand leads to an equation which may be solved iteratively for the optimal value of T. Examples show that the deterministic (square root) solution is in most cases adequate.  相似文献   

6.
This is a single-period, single-product inventory model with several individual sources of demand. It is a multi-location problem with an opportunity for centralization. The holding and penalty cost functions at each location are assumed to be identical. Two types of inventory system are considered in this paper: the decentralized system and the centralized system. The decentralized system is a system in which a separate inventory is kept to satisfy the demand at each source of demand. The centralized system is a system in which all demands are satisfied from one central warehouse. This paper demonstrates that, for any probability distribution of a location's demands, the following properties are always true: given that the holding and penalty cost functions are identical at all locations, (1) if the holding and penalty cost functions are concave functions, then the expected holding and penalty costs in a decentralized system exceed those in a centralized system, except that (2) if the holding and penalty cost functions are linear functions, and for any ij, Pij, the coefficient of correlation between the ith location's demand and the jth location's demand is equal to 1, then the expected holding and penalty costs in a decentralized system are equal to those in a centralized system.  相似文献   

7.
In this work, we study a single-item inventory model where shortages are allowed. A known constant fraction of the demand during the stockout period is backlogged, and the rest are lost sales. Usually, in the literature on inventory control, the unit backorder cost is considered to be a linear function of the waiting time until the customer gets the item. However, in some real-world situations, the unit cost of a backorder may not be linear. To model this situation, we develop a new approach by considering that the backlogging unit cost is a nondecreasing, continuous, and positive function of the amount of time the customers wait before receiving the item. Our objective is to maximize the average profit per unit time. An effective solution procedure to determine the optimal policy and the maximum average profit is developed. Numerical examples, which help us to understand the theoretical results, are also presented.  相似文献   

8.
We consider the k-level facility location problem with soft capacities (k-LFLPSC). In the k-LFLPSC, each facility i has a soft capacity u i along with an initial opening cost f i ≥ 0, i.e., the capacity of facility i is an integer multiple of u i incurring a cost equals to the corresponding multiple of f i . We firstly propose a new bifactor (ln(1/β)/(1 ?β),1+2/(1 ?β))-approximation algorithm for the k-level facility location problem (k-LFLP), where β ∈ (0, 1) is a fixed constant. Then, we give a reduction from the k-LFLPSC to the k-LFLP. The reduction together with the above bifactor approximation algorithm for the k-LFLP imply a 5.5053-approximation algorithm for the k-LFLPSC which improves the previous 6-approximation.  相似文献   

9.
The inventory control problem can be vastly simplified if the replenishments of inventory items are coordinated with one another. That is, whenever an item is replenished, n other items, where n is a decision variable, are also replenished. One way to ensure this would be to classify the inventory items into several groups with a common order interval for each group. In this paper we establish that the optimal groups will be consecutive by hD/A, where h, D and A are the holding cost, demand rate and set-up cost of an item respectively. Using this property of consecutiveness, we develop a fast converging heuristic to create m groups optimally, m = 2, 3,..., M. The heuristic is a substitute for the dynamic programme which would otherwise be necessary and it has the potential for nomographic applications.  相似文献   

10.
This paper considers a production system in which an early set-up is possible. The machine(server) is turned off when there are no units(customers) to process. When the accumulated number of units reaches m(<N), the operator starts a set-up that takes a random time. After the set-up, if there are N or more units waiting for processing, the machine begins to process the units immediately. Otherwise the machine remains dormant in the system until the accumulated number of units reaches N. We model this system by M/G/1 queue with early set-up and N-policy. We use the decomposition property of a vacation queue to derive the distribution of the number of units in the system. We, then, build a cost model and develop a procedure to find the optimal values of (m,N) that minimize a linear average cost.  相似文献   

11.
In this paper, we analyse a production/inventory system modelled as an M/G/1 make-to-stock queue producing different products requiring different and general production times. We study different scheduling policies including the static first-come-first-served, preemptive and non-preemptive priority disciplines. For each static policy, we exploit the distributional Little's law to obtain the steady-state distribution of the number of customers in the system and then find the optimal inventory control policy and the cost. We additionally provide the conditions under which it is optimal to produce a product according to a make-to-order policy. We further extend the application area of a well-known dynamic scheduling heuristic, Myopic(T), for systems with non-exponential service times by permitting preemption. We compare the performance of the preemptive-Myopic(T) heuristic alongside that of the static preemptive-bμ rule against the optimal solution. The numerical study we have conducted demonstrates that the preemptive-Myopic(T) policy is superior between the two and yields costs very close to the optimal.  相似文献   

12.
This paper considers inventory systems which maintain stocks to meet various demand classes with different priorities. We use the concept of a support level control policy. That is rationing is accomplished by maintaining a support level, say K, such that when on hand stock reaches K, all low priority demands are backordered. We develop four analytical and simulation models to improve the existing models. Firstly, multiple support levels are used instead of using a single support level. Secondly, a simulation model with a more realistic assumption on the demand process has been provided. Thirdly, a single period deterministic cost minimisation model has been developed analytically. Finally, we address a continuous review (Q, r) model with a compound Poisson process.  相似文献   

13.
This paper discusses the development and application of a multiple reorder inventory policy which can be stated as follows: reorder an optimal lot size Q when inventory (stock on hand) falls to R, R-Q, R-2Q,..., R-NQ; where R is the reorder level. If demands cause the inventory to fall below two reorder levels, say a jump from R+ ? to R-2Q+?′ where ? and ?′ < Q, an order for 2Q is placed. The policy is a form of (S,q) policy where the maximum stock level S = R + Q. The system is of particular value in cases where the coefficient of variation of lead time demand μ l (μ l = σ l /λ l )is large (say >0·5) and continuous inventory records are maintained. Tables, charts and nomographs to simplify clerical tasks can be obtained quite readily. In this formulation R and Q are not independent factors as in the usual Wilson formulation, but are obtained by minimizing a single cost functional subject to the constraint of a specified risk of out-of-stock condition or a specified level of service (Galliher and Simmond, 1957), (Morse et al., 1959). The particular application concerns the raw material inventories of a manufacturer of metal pressings who is required to offer “immediate service”. The demand distribution during the lead time closely approximates the exponential distribution, and lead times are constant for each raw material. The application of the multiple reorder policy results in a 30 to 35 per cent reduction in inventory for a 95 per cent service level. Measures of sensitivity and response are obtained, and the mean number of shortages is expressed in closed form. The policy is compared with the Wilson policy and shown to be more “effective” in that it results in lower inventories and a smaller number of orders for the case considered.  相似文献   

14.
The Plant-Cycle Location Problem (PCLP) is defined on a graph G=(IJ, E), where I is the set of customers and J is the set of plants. Each customer must be served by one plant, and the plant must be opened to serve customers. The number of customers that a plant can serve is limited. There is a cost of opening a plant, and of serving a customer from an open plant. All customers served by a plant are in a cycle containing the plant, and there is a routing cost associated to each edge of the cycle. The PCLP consists in determining which plants to open, the assignment of customers to plants, and the cycles containing each open plant and its customers, minimizing the total cost. It is an NP-hard optimization problem arising in routing and telecommunications. In this article, the PCLP is formulated as an integer linear program, a branch-and-cut algorithm is developed, and computational results on real-world data and randomly generated instances are presented. The proposed approach is able to find optimal solutions of random instances with up to 100 customers and 100 potential plants, and of instances on real-world data with up to 120 customers and 16 potential plants.  相似文献   

15.
In this paper, we propose a single-item inventory model with returns. The model allows lateral transshipment of returns from one inventory system to another. Each inventory system is under continuous review and an (r, Q) policy is employed as the inventory control. An approximated closed-form solution of the system steady-state probability distribution is derived when Q is large. The approximated inventory cost and replenishment cost can be written in terms of this distribution. We show that the rejection rate of returns is reduced significantly when transshipment of returns is allowed between the inventory systems.  相似文献   

16.
We consider the problem of supplying perishable goods to disloyal customers. As in traditional stock-control literature, a penalty is incurred whenever there is a stockout. However, in contrast to mainstream models, loss of goodwill is explicitly treated by incorporating the behavioural assumption that a fixed proportion of unsatisfied demand is lost forever after each stockout. The problem consists of finding supply levels which minimize costs of over- and underproduction, given unknown but deterministic demand. We derive optimal adaptive search procedures under varying assumptions of a priori knowledge about demand. Optimal strategies are compared to myopic strategies. Our methodology extends the mathematical theory of ‘high-low search’ for a hidden point to incorporate the ‘Heisenberg principle’: the position of the hidden point (demand) is directly influenced by the actions (supply levels) of the searcher.  相似文献   

17.
This research addresses a production-supply problem for a supply-chain system with fixed-interval delivery. A strategy that determines the optimal batch sizes, cycle times, numbers of orders of raw materials, and production start times is prescribed to minimize the total costs for a given finite planning horizon. The external demands are time-dependent following a life-cycle pattern and the shipment quantities follow the demand pattern. The shipment quantities to buyers follow various phases of the demand pattern in the planning horizon where demand is represented by piecewise linear model. The problem is formulated as an integer, non-linear programming problem. The model also incorporates the constraint of inventory capacity. The problem is represented using the network model where an optimal characteristic has been analysed. To obtain an optimal solution with N shipments in a planning horizon, an algorithm is proposed that runs with the complexity of Θ(N2) for problems with a single-phase demand and O(N3) for problems with multi-phase demand.  相似文献   

18.
This paper studies lead time flexibility in a two-stage continuous review supply chain in which the retailer uses the (RQ) inventory system: when his inventory position reaches R, the retailer places orders with size Q to the manufacturer, who uses a transportation provider to deliver them with different lead time options. According to the contract, the manufacturer is able to expedite or postpone the delivery if the retailer makes such a request. Hence, the retailer has the flexibility to modify the lead time by using the most up-to-date demand information. The optimal lead time policy is found to be a threshold-type policy. The sensitivity analysis also shows that R is much more sensitive to the change of lead time than Q, and thus, the paper is primarily focused on finding optimal R. We also provide a cost approximation which yields unimodal cost in R. Furthermore, we analyze the order crossing problem and derive an upper bound for the probability of order crossing. Finally, we conduct an extensive sensitivity analysis to illustrate the effects of lead time flexibility on supply chain performance and discuss the managerial insights.  相似文献   

19.
We consider an M/M/1 queueing system with inventory under the $(r,Q)$ policy and with lost sales, in which demands occur according to a Poisson process and service times are exponentially distributed. All arriving customers during stockout are lost. We derive the stationary distributions of the joint queue length (number of customers in the system) and on-hand inventory when lead times are random variables and can take various distributions. The derived stationary distributions are used to formulate long-run average performance measures and cost functions in some numerical examples.  相似文献   

20.
In this paper, we consider the capacitated multi-facility Weber problem with rectilinear distance. This problem is concerned with locating m capacitated facilities in the Euclidean plane to satisfy the demand of n customers with the minimum total transportation cost. The demand and location of each customer are known a priori and the transportation cost between customers and facilities is proportional to the rectilinear distance separating them. We first give a new mixed integer linear programming formulation of the problem by making use of a well-known necessary condition for the optimal facility locations. We then propose new heuristic solution methods based on this formulation. Computational results on benchmark instances indicate that the new methods can provide very good solutions within a reasonable amount of computation time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号