首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A typical railway crew scheduling problem consists of two phases: a crew pairing problem to determine a set of crew duties and a crew rostering problem. The crew rostering problem aims to find a set of rosters that forms workforce assignment of crew duties and rest periods satisfying several working regulations. In this paper, we present a two-level decomposition approach to solve railway crew rostering problem with the objective of fair working condition. To reduce computational efforts, the original problem is decomposed into the upper-level master problem and the lower-level subproblem. The subproblem can be further decomposed into several subproblems for each roster. These problems are iteratively solved by incorporating cuts into the master problem. We show that the relaxed problem of the master problem can be formulated as a uniform parallel machine scheduling problem to minimize makespan, which is NP-hard. An efficient branch-and-bound algorithm is applied to solve the master problem. Effective valid cuts are developed to reduce feasible search space to tighten the duality gap. Using data provided by the railway company, we demonstrate the effectiveness of the proposed method compared with that of constraint programming techniques for large-scale problems through computational experiments.  相似文献   

2.
The crew scheduling problem in the airline industry is extensively investigated in the operations research literature since efficient crew employment can drastically reduce operational costs of airline companies. Given the flight schedule of an airline company, crew scheduling is the process of assigning all necessary crew members in such a way that the airline is able to operate all its flights and constructing a roster line for each employee minimizing the corresponding overall cost for personnel. In this paper, we present a scatter search algorithm for the airline crew rostering problem. The objective is to assign a personalized roster to each crew member minimizing the overall operational costs while ensuring the social quality of the schedule. We combine different complementary meta-heuristic crew scheduling combination and improvement principles. Detailed computational experiments in a real-life problem environment are presented investigating all characteristics of the procedure. Moreover, we compare the proposed scatter search algorithm with optimal solutions obtained by an exact branch-and-price procedure and a steepest descent variable neighbourhood search.  相似文献   

3.
In the fractional ownership model, the partial owner of an aircraft is entitled to certain flight hours per year, and the management company is responsible for all the operational considerations of the aircraft and for making an aircraft available to the owner at the requested time and place. In the recent years although the industry as a whole has experienced significant growth, most of the major fractional jet management companies have been unprofitable. To increase profitability a management company must minimize its operating costs and increase its crew and aircraft utilization. In this paper, we present a methodology for efficiently scheduling the available resources of a fractional jet management company that takes into consideration the details in real world situations. We then discuss several strategic planning issues, including aircraft maintenance, crew swapping, demand increase and differentiation, and analyze their effects on the resource utilization and profitability.  相似文献   

4.
Crew management is concerned with building the work schedules of crews needed to cover a planned timetable. This is a well-known problem in Operations Research and has been historically associated with airlines and mass-transit companies. More recently, railway applications have also come on the scene, especially in Europe. In practice, the overall crew management problem is decomposed into two subproblems, called crew scheduling and crew rostering. In this paper, we give an outline of different ways of modeling the two subproblems and possible solution methods. Two main solution approaches are illustrated for real-world applications. In particular we discuss in some detail the solution techniques currently adopted at the Italian railway company, Ferrovie dello Stato SpA, for solving crew scheduling and rostering problems.  相似文献   

5.
In this paper, we discuss the dynamic vehicle and crew scheduling problem and we propose a solution approach consisting of solving a sequence of optimization problems. Furthermore, we explain why it is useful to consider such a dynamic approach and compare it with a static one. Moreover, we perform a sensitivity analysis on our main assumption that the travel times of the trips are known exactly a certain amount of time before actual operation.We provide extensive computational results on some real-world data instances of a large public transport company in the Netherlands. Due to the complexity of the vehicle and crew scheduling problem, we solve only small and medium-sized instances with such a dynamic approach. We show that the results are good in the case of a single depot. However, in the multiple-depot case, the dynamic approach does not perform so well. We investigate why this is the case and conclude that the fact that the instance has to be split in several smaller ones, has a negative effect on the performance.  相似文献   

6.
This paper discusses a decision support system for airline and railway crew planning. The system is a state-of-the-art branch-and-price solver that is used for crew scheduling and crew rostering. Since it is far from trivial to build such a system from the information provided in the existing literature, technical issues about the system and its implementation are covered in more detail. We also discuss several applications. In particular, we focus on a specific aircrew rostering application. The computational results contain an interesting comparison of results obtained with the approach in which crew scheduling is carried out before crew rostering, and an approach in which these two planning problems are solved in an integrated manner.  相似文献   

7.
8.
This paper deals with the fleet-assignment, aircraft-routing and crew-pairing problems of an airline flying between Canary Islands. There are two major airports (bases). The company is subdivided in three operators. There are no flight during the night. A crew route leaves from and returns to the same base. An aircraft route starts from one base and arrive to the other base due to maintenance requirements. Therefore some crews must change aircrafts, which is an undesired operation. This paper presents a mathematical formulation based on a binary variable for each potential crew and aircraft route, and describes a column-generation algorithm for obtaining heuristic solutions. Computational results on real-world instances are given and compared to manual solutions by the airline.  相似文献   

9.
The approach adopted for stock control of manufacturing parts in a small company is described. In particular, material requirements planning is compared with the standard stock control method previously in use, and safety buffering is considered. By altering the company's stock-holding and ordering policies a significant saving is achieved.  相似文献   

10.
We present a general modeling approach to crew rostering and its application to computer-assisted generation of rotation-based rosters (or rotas) at the London Underground. Our goals were flexibility, speed, and optimality, and our approach is unique in that it achieves all three. Flexibility was important because requirements at the Underground are evolving and because specialized approaches in the literature did not meet our flexibility-implied need to use standard solvers. We decompose crew rostering into stages that can each be solved with a standard commercial MILP solver. Using a 167 MHz Sun UltraSparc 1 and CPLEX 4.0 MILP solver, we obtained high-quality rosters in runtimes ranging from a few seconds to a few minutes within 2% of optimality. Input data were takes from different depots with crew sizes ranging from 30–150 drivers, i.e., with number of duties ranging from about 200–1000. Using an argument based on decomposition and aggregation, we prove the optimality of our approach for the overall crew rostering problem.  相似文献   

11.
Crew scheduling for airlines requires an optimally scheduled coverage of flights with regard to given timetables. We consider the crew scheduling and assignment process for airlines, where crew members are stationed unevenly among home bases. In addition, their availability changes dynamically during the planning period due to pre-scheduled activities, such as office and simulator duties, vacancy, or requested off-duty days.We propose a partially integrated approach based on two tightly coupled components: the first constructs chains of crew pairings spaced by weekly rests, where crew capacities at different domiciles and time-dependent availabilities are considered. The second component rearranges parts of these pairing chains into individual crew schedules with, e.g., even distribution of flight time. Computational results with real-life data from an European airline are presented.  相似文献   

12.
In this paper we develop an interactive decision analysis approach to treat a large scale bicriterion integer programming problem, addressing a real world assembly line scheduling problem of a manufacturing company. This company receives periodically a set of orders for the production of specific items (jobs) through a number of specialised production (assembly) lines. The paper presents a non compensatory approach based on an interactive implementation of the ε-constraint method that enables the decision maker to achieve a satisfactory goal for each objective separately. In fact, the method generates and evaluates a large number of non dominated solutions that constitute a representative sample of the criteria ranges. The experience with a specific numerical example shows the efficiency and usefulness of the proposed model in solving large scale bicriterion industrial integer programming problems, highlighting at the same time the modelling limitations.  相似文献   

13.
In the airline industry, crew schedules consist of a number of pairings. These are round trips originating and terminating at the same crew home base composed of legal work days, called duties, separated by rest periods. The purpose of the airline crew pairing problem is to generate a set of minimal cost crew pairings covering all flight legs. The set of pairings must satisfy all the rules in the work convention and all the appropriate air traffic regulations. The resulting constraints can affect duty construction, may restrict each pairing, or be imposed on the overall crew schedule.The pairing problem is formulated as an integer, nonlinear multi-commodity network flow problem with additional resource variables. Nonlinearities occur in the objective function as well as in a large subset of constraints. A branch-and-bound algorithm based on an extension of the Dantzig-Wolfe decomposition principle is used to solve this model. The master problem becomes a Set Partitioning type model, as in the classical formulation, while pairings are generated using resource constrained shortest path subproblems. This primal approach implicitly considers all feasible pairings and also provides the optimality gap value on a feasible solution. A nice feature of this decomposition process is that it isolates all nonlinear aspects of the proposed multi-commodity model in the subproblems which are solved by means of a specialized dynamic programming algorithm.We present the application and implementation of this approach at Air France. It is one of the first implementations of an optimal approach for a large airline carrier. We have chosen a subproblem network representation where the duties rather than the legs are on the arcs. This ensures feasibility relative to duty restrictions by definition. As opposed to Lavoie, Minoux and Odier (1988), the nonlinear cost function is modeled without approximations. The computational experiments were conducted using actual Air France medium haul data. Even if the branch-and-bound trees were not fully explored in all cases, the gaps certify that the computed solutions are within a fraction of one percentage point of the optimality. Our results illustrate that our approach produced substantial improvements over solutions derived by the expert system in use at Air France. Their magnitude led to the eventual implementation of the approach.  相似文献   

14.
Jorge Amaya  Paula Uribe 《TOP》2018,26(3):383-402
This work introduces a model of the crew scheduling problem for the operation of trains in the mining industry in the North of Chile. The model possesses particular features due to specific regulations with which train operators in mine material transportation are required to comply: every week, a fixed set of trips must be made according to current demand for the transportation of mine products and supplies. In order to balance the loads of the crews in the long term, the proposed model generates an infinite horizon schedule by means of a rotative scheme in which each crew takes the place of the previous one at the beginning of the next week. This gives rise to a medium/large size 0–1 linear optimization problem, whose solution represents the optimal assignment of drivers to trips with the number of working hours per week distributed equally among crews. The model and algorithm have been implemented with a user interface suitable for the remote execution of real instances on a High Performance Computing platform. The transportation company regularly uses this computerized tool for planning crew schedules and generating efficient assignments for emerging and changing operational conditions.  相似文献   

15.
The integrated crew scheduling (ICS) problem consists of determining, for a set of available crew members, least-cost schedules that cover all flights and respect various safety and collective agreement rules. A schedule is a sequence of pairings interspersed by rest periods that may contain days off. A pairing is a sequence of flights, connections, and rests starting and ending at the same crew base. Given its high complexity, the ICS problem has been traditionally tackled using a sequential two-stage approach, where a crew pairing problem is solved in the first stage and a crew assignment problem in the second stage. Recently, Saddoune et al. (2010b) developed a model and a column generation/dynamic constraint aggregation method for solving the ICS problem in one stage. Their computational results showed that the integrated approach can yield significant savings in total cost and number of schedules, but requires much higher computational times than the sequential approach. In this paper, we enhance this method to obtain lower computational times. In fact, we develop a bi-dynamic constraint aggregation method that exploits a neighborhood structure when generating columns (schedules) in the column generation method. On a set of seven instances derived from real-world flight schedules, this method allows to reduce the computational times by an average factor of 2.3, while improving the quality of the computed solutions.  相似文献   

16.
The integrated vehicle-crew-roster problem with days-off pattern aims to simultaneously determine minimum cost vehicle and daily crew schedules that cover all timetabled trips and a minimum cost roster covering all daily crew duties according to a pre-defined days-off pattern. This problem is formulated as a new integer linear programming model and is solved by a heuristic approach based on Benders decomposition that iterates between the solution of an integrated vehicle-crew scheduling problem and the solution of a rostering problem. Computational experience with data from two bus companies in Portugal and data from benchmark vehicle scheduling instances shows the ability of the approach for producing a variety of solutions within reasonable computing times as well as the advantages of integrating the three problems.  相似文献   

17.
While JIT ideas have been enthusiastically embraced by manufacturing practitioners, the small replenishment batch sizes advocated are difficult to reconcile with the standard management science cost trade-off approach. The difficulty is diagnosed as being due to the standard assumption that capital for inventory is borrowed and hence boundless. We present a new analysis of inventory reduction decisions, such as adopting JIT replenishment or component substitution, using a deterministic batch sizing model which assumes that inventory is financed by the investors in the company and is thus finite. As a consequence, the investment level is treated as an additional variable of the decision analysis. Using the well established technique of constrained optimisation it is shown that for investor-financed operations the effective value of money invested in inventory is the marginal return on investment of the company, and increases with the degree of constraint. Thus, JIT policy options are especially favourable when low levels of inventory investment are sought, even without setup cost reduction, because the capital formerly invested in stock holdings of the JIT components can be reinvested in the inventory of other components to make their replenishment more efficient using larger batch sizes. The analysis is illustrated using an actual case study of a small manufacturing enterprise seeking to reduce inventory and increase return on investment. The analysis has interesting practical implications for inventory managers including a proposed simple method for identifying candidate components for JIT replenishment.  相似文献   

18.
A typical problem arising in airline crew management consists in optimally assigning the required crew members to each flight segment of a given time period, while complying with a variety of work regulations and collective agreements. This problem called the Crew Assignment Problem (CAP) is currently decomposed into two independent sub-problems which are modeled and solved sequentially: (a) the well-known Crew Pairing Problem followed by (b) the Working Schedules Construction Problem. In the first sub-problem, a set of legal minimum-cost pairings is constructed, covering all the planned flight segments. In the second sub-problem, pairings, rest periods, training periods, annual leaves, etc. are combined to form working schedules which are then assigned to crew members.In this paper, we present a new approach to the Crew Assignment Problem arising in the context of airline companies operating short and medium haul flights. Contrary to most previously published work on the subject, our approach is not based on the concept of crew-pairings, though it is capable of handling many of the constraints present in crew-pairing-based models. Moreover, contrary to crew-pairing-based approaches, one of its distinctive features is that it formulates and solves the two sub-problems (a) and (b) simultaneously for the technical crew members (pilots and officers) with specific constraints. We show how this problem can be formulated as a large scale integer linear program with a general structure combining different types of constraints and not exclusively partitioning or covering constraints as usually suggested in previous papers. We introduce then, a formulation enhancement phase where we replace a large number of binary exclusion constraints by stronger and less numerous ones: the clique constraints. Using data provided by the Tunisian airline company TunisAir, we demonstrate that thanks to this new formulation, the Crew Assignment Problem can be solved by currently available integer linear programming technology. Finally, we propose an efficient heuristic method based on a rounding strategy embedded in a partial tree search procedure.The implementation of these methods (both exact and heuristic ones) provides good solutions in reasonable computation times using CPLEX 6.0.2: guaranteed exact solutions are obtained for 60% of the test instances and solutions within 5% of the lower bound for the others.  相似文献   

19.
We study the supply chain tactical planning problem of an integrated furniture company located in the Province of Québec, Canada. The paper presents a mathematical model for tactical planning of a subset of the supply chain. The decisions concern procurement, inventory, outsourcing and demand allocation policies. The goal is to define manufacturing and logistics policies that will allow the furniture company to have a competitive level of service at minimum cost. We consider planning horizon of 1 year and the time periods are based on weeks. We assume that customer’s demand is known and dynamic over the planning horizon. Supply chain planning is formulated as a large mixed integer programming model. We developed a heuristic using a time decomposition approach in order to obtain good solutions within reasonable time limit for large size problems. Computational results of the heuristic are reported. We also present the quantitative and qualitative results of the application of the mathematical model to a real industrial case.  相似文献   

20.
The reasons for endeavouring to estimate the appropriate total research expenditure in a manufacturing industry are outlined. Three techniques are discussed using an analytical, a comparative and a synthetic approach respectively. It is pointed out that the guidance given by these three techniques differs substantially in particular situations and that more studies are needed as to the relative value of the three solutions. It is suggested that an individual company should be spending about one-fifth of its future capital requirements on R. & D. The R. & D. expenditure of the U.K. should be about 4 per cent of the gross national product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号