首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Color center generation by femtosecond laser pulses (30 fs) is observed in a fluence range below the damage threshold in an alkali-free barium borosilicate (BBS) glass, and in a thin layer of SiO2 on a fused silica substrate. The color centers are characterized spectroscopically. The optical density of the color centers in BBS glass is by two orders of magnitude higher than that in silica. A healing process with a time constant of about 30 h can be found. PACS 42.62.-b; 61.80.Ba; 71.55.Jv  相似文献   

2.
Cheng Y  Sugioka K  Midorikawa K 《Optics letters》2004,29(17):2007-2009
Microfluidic dye lasers three-dimensionally embedded in glass have been fabricated for what is believed to be the first time by integrating micro-optical and microfluidic components by use of a femtosecond laser. By pumping the microfluidic laser, in which the microfluidic chamber was filled with the laser dye Rhodamine 6G dissolved in ethanol, with a frequency-doubled Nd:yttrium aluminum garnet laser, lasing action was confirmed by analysis of the emission spectra at different pump powers. In addition, by arranging two microfluidic chambers serially in the glass, we built a microfluidic twin laser that produces an array of two simultaneous laser emissions with one pump laser.  相似文献   

3.
The physical process of forming a modified region in soda-lime glass was investigated using 1 kHz intense femtosecond laser pulses from a Ti: sapphire laser at 775 nm. Through the modifications induced by the femtosecond laser radiation using selective chemical etching techniques, we fabricated reproducible and defined microstructures and further studied their morphologies and etching properties. Moreover, a possible physical mechanism for the femtosecond laser modification in soda-lime glass was proposed.  相似文献   

4.
Straight through-holes of high aspect ratio have been fabricated in glass by femtosecond laser pulses, utilizing unique characteristics of ultrafast lasers such as volumetric multi-photon absorption and nonlinear self-focusing. In this study, interestingly, the drilling process was initiated and progressed in a self-regulated manner, while the laser focus was fixed through the specimen at the neighborhood of the rear surface that was in contact with liquid during the entire drilling process. The deposition of laser energy along the nonlinearly extended focal range and the guided drilling along the pre-defined region are explained based on time-resolved optical transmission and emission measurements.  相似文献   

5.
Permanent microscale bubbles with varied size and number density are induced in borosilicate glasses by adjusting the focusing depth (FD) of a tightly focused femtosecond laser. With continuously increasing of the focusing depth, the average size of generated bubbles experiences an increase-decrease process. However, the number density of generated bubbles experiences an opposite changing process compared to the change of the size. The possible mechanism for the bubble generation and changing with the focusing depth has been discussed.  相似文献   

6.
In this work, we report the influence of the presence of photochromic and color centers in the photobleaching of thulium ions blue emission in YLF (YLiF4) crystals doped with 1 mol% Tm (3+). The samples were irradiated at room temperature both with electron beam and high intensity ultrashort pulses from a Ti:Sapphire CPA laser system. In both irradiations the production of photochromic and color centers was observed via the absorption bands in the UV and visible ranges. Pure LiF and pure and oxygen doped YLF crystals were used to identify the color centers produced and their optical properties. From a phenomenological model it was possible to study the interaction between color centers and thulium ions, and their effect in photobleaching and photodarkening behaviors. Finally, the blue up laser level population was computed using a rate equation analysis.  相似文献   

7.
We use the combination of femtosecond laser dielectric modification and selective chemical etching to fabricate high-quality microchannels in glass. The photoinduced modification morphology has been studied in fused silica and in borosilicate glass BK7, using ultra-high spatial resolution techniques of selective chemical etching followed by atomic force or scanning electron microscopy. The analysis shows that the high differential etch rate inside the modified regions, is determined by the presence of polarization-dependent self-ordered periodic nanocracks or nanoporous structures. We also investigate the optimum irradiation conditions needed to produce high-aspect ratio microchannels with small symmetric cross-sections and smooth walls. PACS 42.62.-b; 42.65.Re; 81.05.Kf; 87.80.Mj  相似文献   

8.
Individual Gaussian-shaped bands are isolated in optical absorption spectra using a computer and their parameters are determined. An increase in the concentration of both types of color centers with increasing integral electron flux is calculated using the Smekal formula. Two sections are isolated in the build-up kinetics for the centers. The concentration of color centers at 3.0 eV and 2.4 eV are related to each other.  相似文献   

9.
Using femtosecond laser pulses, coordinated oscillations (coherent phonons) of Bi single-crystal atoms have been excited and recorded. The comparison with experimental results on the X-ray probing of coherent phonons at the same excitation energy density demonstrates that the observed lifetime and frequency shift of the oscillations are similar in both cases. Moreover, it has been revealed that the relaxation (incoherent) contributions are identical. This coincidence of the photoinduced response parameters indicates that probing in the visible spectrum correctly reflects the coherent dynamics of the Bi crystal lattice.  相似文献   

10.
Microlens arrays of high-refractive-index glass GeO2-SiO2 were fabricated by femtosecond laser lithography assisted micromachining. GeO2-SiO2 thin glass films, which were deposited by plasma-enhanced chemical vapor deposition, have a refractive index of 1.4902 and exhibit high transparency at wavelengths longer than 320 nm. Using a femtosecond laser, three-dimensional patterns were written inside resists on GeO2-SiO2 films, and then the patterns were transferred to the underlying films by CHF3 and O2 plasma treatments. This combined process enabled us to obtain uniform microlens structures with a diameter of 38 μm. The heights of the transferred lenses were approximately one-quarter the height of the resist patterns, due to differences in the plasma etching rates between GeO2-SiO2 and the resist. The lens surfaces were smooth. When 632.8-nm-wavelength He-Ne laser light was normally coupled to the lenses, focal spots with a diameter of 3.0 μm were uniformly observed. The combined process was effective in fabricating three-dimensional surfaces of inorganic optical materials.  相似文献   

11.
We show that three-dimensional micro-optical components can be embedded in a photosensitive glass by a femtosecond (fs) laser. After exposure to the tightly focused fs laser beam, latent images are written inside the sample. Modified regions are developed by a postbaking process and then preferentially etched away in a 10%-dilute solution of hydrofluoric acid. After this process, hollow internal structures are formed that act as a mirror and a beam splitter. Furthermore, we find that postannealing smoothes the surfaces of the fabricated hollow structures, resulting in great improvement of their optical properties.  相似文献   

12.
Si J  Kitaoka K  Qiu J  Mitsuyu T  Hirao K 《Optics letters》1999,24(13):911-913
Second-harmonic generation in germanosilicate glasses was encoded by coherent superposition of the 810-nm fundamental and the 405-nm second-harmonic light of a femtosecond laser. The difference spectra between the absorption spectra of the glasses before and after preparation were measured. An evident correlation between the induced second-order nonlinearity and the creation of a Ge electron center was observed, suggesting that a band-to-band transition by multiphoton absorption is probably responsible for the photoinduced second-harmonic generation.  相似文献   

13.
We presented a microfabrication process for optical volume vortex grating inside glass by femtosecond laser pulses. The self-trapped filament of femtosecond laser pulses can induce hundreds μm-long region refractive-index changes in glass. We realized the restructured optical vortex beams using a collimated He–Ne laser beam. The maximum first-order diffraction efficiency was about 19.6%. The volume vortex grating structure fabricated in glass is polarization dependent.  相似文献   

14.
We show that a femtosecond laser enables us to produce true three-dimensional (3-D) microstructures embedded in a photosensitive glass, which has superior properties of transparency, hardness and chemical and thermal resistances. The photosensitivity arises from the cerium in the glass. After exposure to a focused laser beam, latent images are written. Modified regions are developed by a post-baking process and then preferentially etched away in a 10% dilute solution of hydrofluoric acid at room temperature. We have measured the critical dose for modification of the photosensitive glass, and fabricated 3-D microstructures with microcells and hollow microchannels embedded in the glass based on the critical dose. Received: 12 August 2002 / Accepted: 13 August 2002 / Published online: 4 December 2002 RID="*" ID="*"Corresponding author. Fax: +81-48/468-4682, E-mail: mmasudaw@postman.riken.go.jp  相似文献   

15.
Writing conditions for the fabrication of optical waveguides in bulk fused silica glass by use of 1 kHz focused femtosecond laser pulses at 800 nm were systematically determined for different focusing geometries. The results demonstrate that waveguides can be formed based on optical breakdown, filamentation (single or multiple), or a combination of both processes, when using pulse energies lower than the threshold of structural damage. The mechanisms of laser-induced index change are also discussed. PACS 42.65.Jx; 42.70.Ce; 42.79.Gn  相似文献   

16.
The space-time dynamics of thermal melting, subsurface cavitation, spallative ablation, and fragmentation ablation of the silicon surface excited by single IR femtosecond laser pulses is studied by timeresolved optical reflection microscopy. This dynamics is revealed by monitoring picosecond and (sub)nanosecond oscillations of probe pulse reflection, which is modulated by picosecond acoustic reverberations in the dynamically growing surface melt subjected to ablation and having another acoustic impedance, and by optical interference between the probe pulse replicas reflected by the spalled layer surface and the layer retained on the target surface. The acoustic reverberation periods change during the growth and ablation of the surface melt film, which makes it possible to quantitatively estimate the contributions of these processes to the thermal dynamics of the material surface. The results on the thermal dynamics of laser excitation are supported by dynamic measurements of the ablation parameters using noncontact ultrasonic diagnostics, scanning electron microscopy, atomic force microscopy, and optical interference microscopy of the modified regions appearing on the silicon surface after ablation.  相似文献   

17.
强太赫兹源是太赫兹科学技术发展的关键,其中大能量强场太赫兹脉冲源在超快物态调控、新型电子加速器等领域具有重要的应用前景.超快超强激光与等离子体相互作用是近年来发展起来的一种新型的强场太赫兹辐射产生途径.本文报道了利用超强飞秒激光脉冲与金属薄膜靶作用产生太赫兹辐射的实验结果,研究了激光能量和离焦量对靶后太赫兹辐射能量的影响,并通过监测激光背向散射光谱,定性揭示了其变化规律与不同光强下的电子加热机制的相关性.实验表征了太赫兹辐射的频谱、偏振及聚焦光斑情况.测量结果表明,实验产生了脉冲能量达458μJ、聚焦场强高达GV/m量级的超宽带太赫兹辐射,为开展极端太赫兹脉冲与物质相互作用研究提供了一种新的强场太赫兹光源.  相似文献   

18.
采用四个不同偏振方向的线偏振和圆偏振态飞秒激光扫描处理金属铁表面来制备不同的彩色铁。从不同角度观察被处理区域时,线偏振扫描处理的彩色区域呈现不同的色彩, 而圆偏振扫描处理的区域没有明显的颜色变化。扫描电子显微镜图片显示,线偏振激光扫描处理金属铁表面形成了nm量级的激光诱导周期表面结构,其方向始终与激光偏振方向垂直;圆偏振激光扫描处理金属铁表面形成的条纹结构不明显且有大量的纳米颗粒结构。  相似文献   

19.
In order to improve the morphology of microchannels fabricated by femtosecond laser ablation, the thermal process was introduced into the post-treatment processing. It was found that the thermal process cannot only decrease the roughness but also the width and depth of the microchannel. The change rates of width, depth, and roughness of the microchannel increase with processing temperature. When we prolong the time of constant temperature, the change rate of the width decreases at the beginning, and then it tends to be stable. However,the change rates of depth and roughness increase, and then they tend to be stable. In this Letter, we discuss the reasons of the above phenomena.  相似文献   

20.
采用四个不同偏振方向的线偏振和圆偏振态飞秒激光扫描处理金属铁表面来制备不同的彩色铁。从不同角度观察被处理区域时,线偏振扫描处理的彩色区域呈现不同的色彩,而圆偏振扫描处理的区域没有明显的颜色变化。扫描电子显微镜图片显示,线偏振激光扫描处理金属铁表面形成了nm量级的激光诱导周期表面结构,其方向始终与激光偏振方向垂直;圆偏振激光扫描处理金属铁表面形成的条纹结构不明显且有大量的纳米颗粒结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号