首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Air bubble in volatile liquid on exiting to the surface spins a vortex maintaining integrity of the film over an indefinite period of time. The shear stress associated with the surface tension increase in the adiabatic evaporation cooling drags the warmer liquid inwards into the film counteracting its capillary drainage out under gravity. The chaotic patterns, visualized with the aid of light interferometry, depend on liquid volatility, degree of vapor saturation, and air convection. The circulation intensifies and the frequency of hydrodynamic instabilities in the multiphase flow increases on the transition to strong turbulent regimes with increasing evaporation rate. Self-consistency of the physical mechanisms of solute and evaporation inhibition of bubble coalescence is verified through dimensional parametric analysis.  相似文献   

2.
Stain patterns formed by drying up of droplets of polymer latex dispersion on hydrophilic and hydrophobic surfaces were examined in light of the mechanism of particle adsorption in evaporating droplets. On hydrophilic surfaces, the volume of droplets decreased with time, keeping the initial outline of contact area, and circular stain patterns were formed after the dry-up of droplets. By the microscopic observation of particles in the droplets, it was found that a large portion of the particles were forced to adsorb on the outline of the contact area where a microscopic thin water layer was formed because of hydrophilicity of the surface. On hydrophobic surfaces, on the other hand, the contact area of droplets decreased as evaporation proceeded, while no particle was adsorbed on the surface at the early stages. The particles in the droplets started to aggregate when the concentration of particles reached a critical value, and the aggregates adsorbed on the surface forming tiny spots after the dry-up. Time evolutions of contact angle, contact area and volume of the droplets were analyzed in light of differences in the adsorption mechanisms between hydrophilic and hydrophobic surfaces. Received: 14 January 1998 Accepted: 1 May 1998  相似文献   

3.
We present a lattice Boltzmann solution of the equations of motion describing the spreading of droplets on topologically patterned substrates. We apply it to model superhydrophobic behavior on surfaces covered by an array of micrometer-scale posts. We find that the patterning results in a substantial increase in contact angle, from 110 degrees to 156 degrees. The dynamics of the transition from drops suspended on top of the posts to drops collapsed in the grooves is described.  相似文献   

4.
The dynamics of the three-phase contact line for water and ethanol is experimentally investigated using substrates of various hydrophobicities. Different evolutions of the droplet profile (contact line, R, and contact angle, θ) are found to be dependent on the hydrophobicity of the substrate. A simple theoretical approach based on the unbalanced Young force is used to explain the depinning of the contact line on hydrophilic surfaces or the monotonic slip on hydrophobic substrates. The second part of the article involves the addition of different quantities of titanium oxide nanoparticles to water, and a comparison of the evaporative behavior of these novel fluids with the base liquid (water) on substrates varying in hydrophobicity (i.e., silicon, Cytop, and PTFE) is presented. The observed stick-slip behavior is found to be dependent on the nanoparticle concentration. The evaporation rate is closely related to the dynamics of the contact line. These findings may have an important impact when considering the evaporation of droplets on different substrates and/or those containing nanoparticles.  相似文献   

5.
In this review we examine the influence of the line tension τ on droplets and particles at surfaces. The line tension influences the nucleation behavior and contact angle of liquid droplets at both liquid and solid surfaces and alters the attachment energetics of solid particles to liquid surfaces. Many factors, occurring over a wide range of length scales, contribute to the line tension. On atomic scales, atomic rearrangements and reorientations of submolecular components give rise to an atomic line tension contribution τatom (~1 nN), which depends on the similarity/dissimilarity of the droplet/particle surface composition compared with the surface upon which it resides. At nanometer length scales, an integration over the van der Waals interfacial potential gives rise to a mesoscale contribution |τvdW|  1–100 pN while, at millimeter length scales, the gravitational potential provides a gravitational contribution τgrav  +1–10 μN. τgrav is always positive, whereas, τvdW can have either sign. Near wetting, for very small contact angle droplets, a negative line tension may give rise to a contact line instability. We examine these and other issues in this review.  相似文献   

6.
Evaporation of aqueous droplets of carbon nanotubes (CNTs) coated with a physisorbed layer of humic acid (HA) on a partially hydrophilic substrate induces the formation of a film of CNTs. Here, we investigate the role that the global geometry of the substrate surfaces has on the structure of the CNT film. On a flat mica or silica surface, the evaporation of a convex droplet of the CNT dispersion induces the well-known "coffee ring", while evaporation of a concave droplet (capillary meniscus) of the CNT dispersion in a wedge of two planar mica sheets or between two crossed-cylinder sheets induces a large area (>mm(2)) of textured or patterned films characterized by different short- and long-range orientational and positional ordering of the CNTs. The resulting patterns appear to be determined by two competing or cooperative sedimentation mechanisms: (1) capillary forces between CNTs giving micrometer-sized filaments parallel to the boundary line of the evaporating droplet and (2) fingering instability at the boundary line of the evaporating droplet and subsequent pinning of CNTs on the surface giving micrometer-sized filaments of CNTs perpendicular to this boundary line. The interplay between substrate surface geometry and sedimentation mechanisms gives an extra control parameter for manipulating patterns of self-assembling nanoparticles at substrate surfaces.  相似文献   

7.
The capture efficiency of condensing and evaporating water droplets for airborne hydrophilic and hydrophobic ZnS particles of 1.1 micron diameter was determined experimentally for unit dropletReynolds number and droplet radial growth rates from –22×10–5 to 2×10–5 cm sec–1. Capture efficiencies for hydrophilic particles were greater by a factor of three to four than those for hydrophobic particles during droplet growth.
Zusammenfassung Die Abscheidungswirksamkeit von kondensierenden und verdampfenden Wassertröpfchen für schwebende hydrophile und hydrophobe ZnS-Teilchen von 1,1 Mikron Durchmesser wurde experimentell festgestellt für Tröpfchen mit derReynoldsschen Zahl 1 und einer radialen Tröpfchen-Wachstumsgeschwindigkeit von –22×10–5 bis 2×10–5 cm/sec. Die Abscheidungswirksamkeiten für hydrophile Teilchen waren drei bis viermal grö\er als die für hydrophobe Teilchen während des Tröpfchenwachstums.
  相似文献   

8.
We demonstrate that the thermodynamic properties of a single liquid aerosol droplet can be explored through the combination of a single-beam gradient force optical trap with Raman spectroscopy. A single aqueous droplet, 2-6 microm in radius, can be trapped in air indefinitely and the response of the particle to variations in relative humidity investigated. The Raman spectrum provides a unique fingerprint of droplet composition, temperature, and size. Spontaneous Raman scattering is shown to be consistent with that from a bulk phase sample, with the shape of the OH stretching band dependent on the concentration of sodium chloride in the aqueous phase and on the polarization of the scattered light. Stimulated Raman scattering at wavelengths commensurate with whispering gallery modes is demonstrated to provide a method for determining the size of the trapped droplet with nanometer precision and with a time resolution of 1 s. The polarization dependence of the stimulated scatter is consistent with the dependence observed for the spontaneous scatter from the droplet. By characterizing the spontaneous and stimulated Raman scattering from the droplet, we demonstrate that it is possible to measure the equilibrium size and composition of an aqueous droplet with variation in relative humidity. For this benchmark study we investigate the variation in equilibrium size with relative humidity for a simple binary sodium chloride/aqueous aerosol, a typical representative inorganic/aqueous aerosol that has been studied extensively in the literature. The measured equilibrium sizes are shown to be in excellent agreement with the predictions of K?hler theory. We suggest that this approach could provide an important new strategy for characterizing the thermodynamic properties and kinetics of transformation of aerosol particles.  相似文献   

9.
Chirality can be bestowed upon a surface by the adsorption of molecules and is usually discussed in terms of the molecular handedness. However, the adsorption process often leads to a new manifestation of chirality in the form of the adsorption footprint, which can also be chiral and generate mirror-images in 2-D. Therefore, in describing the chirality of the interface, one must consider both the handedness and the adsorption 'footedness' of the system. Specifically, the creation of a truly homochiral surface must ensure that a single chirality is expressed for each aspect, and requires not only the control of molecule handedness but also direct control over footedness. Here, we demonstrate the ability to engineer homochiral footedness by a structural modification of enantiopure (S)-proline, which normally creates a (4 × 2) organization on a Cu(110) surface with heterochiral footedness. This modification of proline via the addition of a double bond within the pyrrolidine ring, yielding 3-pyrroline-2-carboxylic acid (PCA), is sufficient to drive the footprints of the entire (4 × 2) assembly from heterochiral to homochiral, leading to the creation of a truly homochiral interface The effects of modifications upon the footprint arrangements were characterized at the single-molecule level by scanning tunnelling microscopy, reflection absorption infrared spectroscopy and periodic density functional theory calculations. The control of adsorption footprints is not only pivotal to tailoring chirality at surfaces but also plays a key role in dictating the organization, the outward facing functionalities and the response of the organic-inorganic interface.  相似文献   

10.
The approach of water droplets self-running horizontally and uphill without any other forces was proposed by patterning the shape-gradient hydrophilic material (i.e., mica) to the hydrophobic matrix (i.e., wax or low-density polyethylene (LDPE)). The shape-gradient composite surface is the best one to drive water droplet self-running both at the high velocity and the maximal distance among four different geometrical mica/wax composite surfaces. The driving force for the water droplets self-running includes: (1) the great difference in wettability of surface materials, (2) the low contact angle hysteresis of surface materials, and (3) the space limitation of the shape-gradient transportation area. Furthermore, the average velocity and the maximal distance of the self-running were mainly determined by the gradient angle (alpha), the droplet volume, and the difference of the contact angle hysteresis. Theoretical analysis is in agreement with the experimental results.  相似文献   

11.
Impact of droplets onto inclined surfaces   总被引:1,自引:0,他引:1  
Drop impacts onto dry walls and liquid films at low impact angles and low normal Weber numbers are experimentally investigated. Measurements were performed using a high spatial resolution CCD camera and short exposure times, yielding both qualitative and quantitative information about the impact. Whereas a droplet generally deposits on the surface for high impact angles, a rebound can occur at lower angles and for smooth or wetted surfaces. No rebound is observed for rough surfaces. A low viscous liquid (water) will either rebound or deposit on smooth or wetted surfaces. A high viscous liquid (glycerin) may also disjoin into two droplets, depending on the impact angle. A correlation is presented for the size of the secondary droplet. A further correlation quantifies the critical impact angle at which rebounding first occurs in terms of the normal Weber number.  相似文献   

12.
13.
The origin of the potential difference between the potential of zero charge of a metal/water interface and the work function of the metal is a recurring issue because it is related to how water interacts with metal surface in the absence of surface charge. Recently ab initio molecular dynamics method has been used to model electrochemical interfaces to study interfacial potential and the structure of interface water. Here, we will first introduce the computational standard hydrogen electrode method, which allows for ab initio determination of electrode potentials that can be directly compared with experiment. Then, we will review the recent progress from ab initio molecular dynamics simulation in understanding the interaction between water and metal and its impact on interfacial potential. Finally, we will give our perspective for future development of ab initio computational electrochemistry.  相似文献   

14.
Evaporating droplets of volatile organic solvent containing amphiphilic block copolymers may undergo hydrodynamic instabilities that lead to dispersal of copolymer micelles into the surrounding aqueous phase. As for related phenomena in reactive polymer blends and oil/water/surfactant systems, this process has been ascribed to a nearly vanishing or transiently negative interfacial tension between the water and solvent phases induced by adsorption of copolymer to the interface. In this report, we investigate the influence of the choice of organic solvent and polymer composition for a series of polystyrene-b-poly(ethylene oxide) (PS-PEO) diblock copolymers, by in situ micropipette tensiometry on evaporating emulsion drops. These measurements suggest that the sensitivity to the organic solvent chosen reflects both differences in the bare solvent/water interfacial tension as well as the propensity of the copolymer to aggregate within the organic phase. While instabilities coincident with an approach of the interfacial tension nearly to zero were observed only for copolymers with PEO content greater than 15 wt.%, beyond this point the interfacial behavior and critical concentration needed to trigger surface instability were found to depend only weakly on copolymer composition.  相似文献   

15.
Four sulfur-containing compounds important to tropospheric chemistry have been examined at the vapor/H2O and vapor/D2O interfaces. These adsorbates, DMS, DMSO, DMSO2, and DMSO3, were studied by surface tension and vibrational sum-frequency spectroscopy (VSFS). Each adsorbate is surface active and each orients with the hydrophobic methyl groups pointed out of the plane of the interface. Their influence on the interfacial water structure is adsorbate dependent. Strong and weak interactions with surface water are observed as well as reorientation of subsurface water molecules, resulting in an increase in interfacial thickness.  相似文献   

16.
Molecular dynamics simulations were performed to study the behavior of nanoscale water droplets at solid surfaces. Simulations of droplets on heterogeneous patterned surfaces show that the relative sizes of the domains and the droplets play an important role as do the interactions between the solid and the liquid, particularly when the domain width is comparable to the droplet radius. For pillar surfaces, a transition is observed between the Wenzel and the Cassie and Baxter regimes with increasing pillar height. The effects of pillar width and the gap between the pillars were also examined. The simulations show clearly the importance of the detailed topography and composition of the solid surface.  相似文献   

17.
Condensation and freezing of droplets on superhydrophobic surfaces   总被引:1,自引:0,他引:1  
Superhydrophobic coatings are reported as promising candidates for anti-icing applications. Various studies have shown that as well as having ultra water repellency the surfaces have reduced ice adhesion and can delay water freezing. However, the structure or texture (roughness) of the superhydrophobic surface is subject to degradation during the thermocycling or wetting process. This degradation can impair the superhydrophobicity and the icephobicity of those coatings. In this review, a brief overview of the process of droplet freezing on superhydrophobic coatings is presented with respect to their potential in anti-icing applications. To support this discussion, new data is presented about the condensation of water onto physically decorated substrates, and the associated freezing process which impacts on the freezing of macroscopic droplets on the surface.  相似文献   

18.
A procedure that rapidly generates an approximate parametric representation of macromolecular surface shapes is described. The parametrization is expressed as an expansion of real spherical harmonic basis functions. The advantage of using a parametric representation is that a pair of surfaces can be matched by using a quasi-Newton algorithm to minimize a suitably chosen objective function. Spherical harmonics are a natural and convenient choice of basis function when the task is one of search in a rotational search space. In particular, rotations of a molecular surface can be simulated by rotating only the harmonic expansion coefficients. This rotational property is applied for the first time to the 3-dimensional molecular similarity problem in which a pair of similar macromolecular surfaces are to be maximally superposed. The method is demonstrated with the superposition of antibody heavy chain variable domains. Special attention is given to computational efficiency. The spherical harmonic expansion coefficients are determined using fast surface sampling and integration schemes based on the tessellation of a regular icosahedron. Low resolution surfaces can be generated and displayed in under 10 s and a pair of surfaces can be maximally superposed in under 3 s on a contemporary workstation. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 383–395, 1999  相似文献   

19.
In the present study, we investigated the static and dynamic behavior of water droplets on solid surfaces featuring pillar-type nanostructures by using molecular dynamics simulations. We carried out the computation in two stages. As a result of the first computational stage, an initial water cube reached an equilibrium state at which the water droplet showed different shapes depending on the height and the lateral and gap dimensions of the pillars. In the second computational stage, we applied a constant body force to the static water droplet obtained from the first computational stage and evaluated the dynamic behavior of the water droplet as it slid along the pillar-type surface. The dynamic behavior of the water droplet, which could be classified into three different groups, depended on the static state of the water droplet, the pillar characteristics (e.g., height and the lateral and gap dimensions of the pillars), and the magnitude of the applied body force. We obtained the advancing and receding contact angles and the corresponding contact angle hysteresis of the water droplets, which helped classify the water droplets into the three different groups.  相似文献   

20.
The impact of picoliter-sized water droplets on superhydrophobic CF(4) plasma fluorinated polybutadiene surfaces is investigated with high-speed imaging. Variation of the surface topography by plasmachemical modification enables the dynamics of wetting to be precisely controlled. Final spreading ratios as low as 0.63 can be achieved. A comparison of the maximum spreading ratio and droplet oscillation frequencies to models described in the literature shows that both are found to be much lower than theoretically predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号