首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The properties of resveratrol (3′, 4′, 5-trihydroxystlbene, RST) were for the first time evaluated as a potential substrate for horseradish peroxidase (HRP)-catalyzed fluorogenic reaction. The properties of RST for use as fluorogenic substrates for HRP and its application in immunoassays were compared with commercially available substrates such as p-hydroxyphenylpropionic acid (pHPPA), chavicol and Amplex red by a fluoroimmunosensing method in the use of Schistosomia japonicum antibody (SjAb) as a model analyte. The fluoroimmunosensing device was constructed by dispersing Schistosomia japonicum antigen (SjAg), nano-Ag/SiO2 particles and sol-gel at low temperature. In pH 5.8 Britton-Robinson buffer (B-R), HRP-SjAb conjugates can catalyze the polymerization reaction of RST by H2O2 forming fluorescent dimmers. The increase of the fluorescence intensity of the dimmers product at emission of 462 nm (excitation: 315 nm) is proportional to the concentration of HRP-SjAb binding to the SjAg entrapped in the nano-Ag/SiO2 particles-sol-gel matrix. A competitive binding assay has been used to determine SjAb in rabbit serum with the aid of SjAb labeled with HRP. Substrate RST showed comparable ability for HRP detection and its enzyme-linked immunosensing reaction system, in a linear detection ranging of 1.5×10−6–7.3×10−4 g/L and with a detection limit of 1.5×10−6 g/L. The immobilized biocomposites surface could be regenerated by simply polishing with an alumina paper, with an excellent reproducibility (RSD = 4.7%). The proposed method has been successfully used for analysis of the rabbit serum sample with satisfactory results. Supported by the Projects of Scientific Research Fund of Hunan Provincial Education Department of China (Grant Nos. 05B020 and 06C098)  相似文献   

2.
The Ag/SiO2 nanoparticles had been successfully synthesized. The Ag/SiO2 nanoparticles can be an excellent catalyst for the synthesis of ultraviolet absorber benzotriazole by catalytic hydrogenation. The synthesis route is very efficient with less pollution and excellent yields. It is also easy to industrialized production.  相似文献   

3.
利用硅铝无定形结构作为保护层的银纳米颗粒在杀菌和催化领域具有重要应用. 银纳米颗粒的形貌控制是其优异性能的重要保证, 尤其是具有规则结构的银纳米颗粒的合成一直是该领域的难点. 本文以亚稳态结构的硅铝分子筛作为模板, 在室温条件下采用离子交换方法, 通过调整银离子的含量和离子交换时间, 控制银在分子筛中的分布和含量, 在还原剂N(C2H5)3存在下, 通过微波还原反应获得了不同银/硅铝无定形结构比例的复合材料. 透射电子显微镜测试结果表明, 不同比例的前驱体经微波法还原后, 小尺寸的银纳米颗粒可以分布在无定形的硅铝基质中; 当增大银的比例后, 银纳米颗粒则出现项链式结构, 并且由无定形硅铝薄层链接并包裹. 这类结构既具有银纳米颗粒的催化性能, 同时又在硅铝薄层的保护下表现出良好的稳定性, 在杀菌和催化领域具有广泛的应用前景.  相似文献   

4.
SiO2/Ag核壳结构纳米粒子的制备及表征   总被引:3,自引:0,他引:3  
胡永红  容建华  刘应亮  满石清 《化学学报》2005,63(24):2189-2193
以金纳米粒子为表面晶种, 通过化学还原的方法制备了二氧化硅/银核壳复合纳米粒子. 采用TEM, XRD及UV/vis对其结构、形貌以及光学性质进行了表征和研究, 结果表明所得到的复合粒子粒径均匀、银纳米壳光滑完整, 厚度可控. 并且随着银纳米壳厚度的增大, 其光学等离子体共振峰逐渐蓝移. 而当银纳米粒子在二氧化硅胶粒表面上生长的过程中, 它们的共振峰又逐渐红移, 直到完整的银壳形成.  相似文献   

5.
将ZnO助剂加到由苯胺和乙二醇一步合成吲哚的Ag/SiO2催化剂中,发现ZnO助剂能大大提高催化剂的稳定性.XRD和TEM表征首次得到:ZnO是结构型助剂,它能使银很好地分散在SiO2表面上,并可有效地抑制反应过程中银粒子的烧结.  相似文献   

6.
In this paper, the shape evolution and thermal stability of Ag nanoparticles (NPs) on spherical SiO2 substrates were investigated by means of in situ transmission electron microscopy (TEM) imaging and differential scanning calorimetry (DSC). The initial Ag NPs at room temperature were semispherical-like, with an average size of 9 nm in half-height width, well-dispersed on spherical SiO2 substrates. No obvious shape change was observed when the semispherical NPs of Ag were heated at temperature lower than 550 °C. The shape of the semispherical Ag NPs changed gradually into a spherical one in the temperature range of 550-700 °C, where surface diffusion and surface premelting took place. When the heating temperature was increased up to 750 °C, the spherical Ag NPs were found to desquamate from the substrates due to the decreases of the contact area and the binding force between Ag NPs and SiO2 substrates. A possible mechanism for the desquamation of Ag NPs from the SiO2 sphere surface is proposed according to the results of in situ TEM observation and DSC analysis.  相似文献   

7.
In this paper, a novel sandwich electrochemiluminescence (ECL) immunosensor was constructed by ferrocene for quenching Ag nanoparticles functionalized g-C3N4 (Ag@g-C3N4) emission. The prepared Ag@g-C3N4 had strong and stable ECL signals compared to pure g-C3N4 and primary antibody (Ab1) can be immobilized on Ag@g-C3N4 by adsorption of Ag nanoparticles. Ferrocene carboxylic acid (Fc-COOH) labeled secondary antibody was immobilized on Au doped mesoporous Al2O3 nanorods (Au@Al2O3–Fc-COOH@Ab2) as labels through adsorption ability of Au toward proteins. After a sandwich-type immunoreaction, a remarkable decrease of ECL signal was observed due to the ECL quenching of Ag@g-C3N4 by Au@Al2O3–Fc-COOH@Ab2. As a result, the change of ECL intensity has a direct relationship with the logarithm of CEA concentrations in the range of 1 pg mL−1–100 ng mL−1 with a detection limit of 0.35 pg mL−1 (S/N = 3). Additionally, the proposed immunosensor shows high specificity, good reproducibility, and long-term stability.  相似文献   

8.
张晓东 《化学教育》2018,39(24):32-35
制备了一个贵金属负载型催化剂并对其催化氧化CO性能进行了测试。采用等体积浸渍法制备了Ag/SiO2催化剂,并通过X射线粉末衍射(XRD)、透射电子显微镜(TEM)、N2-吸脱附曲线及程序升温还原(H2-TPR)表征了催化剂的结构和形态。结合材料的表征数据及性能测试结果分析探讨银的负载量对催化氧化CO活性的影响,进一步探究该催化反应的进行机制。该实验将多相催化和现代测试技术与物理化学实验教学相结合,可以让学生获取催化学科的前沿知识,了解催化反应以及各种现代测试技术的基本原理,从而提高学生的综合实验能力,激发独立思考和创新的意识,有利于创新性人才的培养。  相似文献   

9.
In this paper, surface plasmon resonance biosensors based on magnetic core/shell Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were developed for immunoassay. With Fe(3)O(4) and Fe(3)O(4)/Ag nanoparticles being used as seeding materials, Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were formed by hydrolysis of tetraethyl orthosilicate. The aldehyde group functionalized magnetic nanoparticles provide organic functionality for bioconjugation. The products were characterized by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), FTIR and UV-vis absorption spectrometry. The magnetic nanoparticles possess the unique superparamagnetism property, exceptional optical properties and good compatibilities, and could be used as immobilization matrix for goat anti-rabbit IgG. The magnetic nanoparticles can be easily immobilized on the surface of SPR biosensor chip by a magnetic pillar. The effects of Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles on the sensitivity of SPR biosensors were also investigated. As a result, the SPR biosensors based on Fe(3)O(4)/SiO(2) nanoparticles and Fe(3)O(4)/Ag/SiO(2) nanoparticles exhibit a response for rabbit IgG in the concentration range of 1.25-20.00 μg ml(-1) and 0.30-20.00 μg ml(-1), respectively.  相似文献   

10.
余锡宾  王桂华 《分子催化》1999,13(5):351-356
用Raman,XRD,SEM等技术,研究了Pd-B/SiO2非晶态合金的晶化过程及其对催化活性的影响。研究发现,Pd^2+能高度分散在SiO2载体上,并与载体发生作用,但Pd-B合金在载体上形成颗粒微细的原子簇,温度低于673K时,这些原子簇在SiO2载体上呈非晶态结构,并随着温度的增加而发生团聚。  相似文献   

11.
通过甲基丙烯酸与苯乙烯聚合制备了表面负电性的聚苯乙烯(PSt)纳米乳胶粒. 在乙醇与水的混合溶剂中, 用硅烷偶联剂乙烯基三甲氧基硅烷对其进行表面改性后加入钛酸四丁酯、 氯化钠和硝酸银, 以PSt乳胶粒为模板采用共沉淀法制备了PSt-AgCl-TiO2复合微球. 在180 ℃对其进行液相预处理及煅烧去除PSt模板后制备了Ag/AgCl-TiO2空心复合粒子. 对各阶段产物的形貌、 晶体结构和比表面积等进行了表征. 结果表明, 所得产物为Ag/AgCl与锐钛矿型TiO2复合的空心粒子, 其比表面远大于商品TiO2(P25). 考察了Ag/AgCl-TiO2复合粒子在紫外光与可见光下对罗丹明B(RhB)降解的催化活性. 结果表明, 在紫外光下n(Ag)/n(Ti)=0.1%的Ag/AgCl-TiO2复合粒子活性最高, 30 min时对RhB的降解率比不含Ag/AgCl的TiO2空心微球提高了13%; 虽然Ag/AgCl-TiO2在可见光下的催化活性远比紫外光下低, 但与纯TiO2空心纳米微球相比其催化活性仍明显增强. n(Ag)/n(Ti)=2.0%的Ag/AgCl-TiO2复合粒子催化活性最高, 120 min时对RhB的降解率比不含Ag/AgCl的TiO2空心微球提高了38%.  相似文献   

12.
The conversion of benzene to cyclohexane, a key intermediate in adipic acid production, is still the most important industrial hydrogenation reaction of monocyclic arenes. Traditionally, benzene hydrogenation is performed with heterogeneous catalysts such…  相似文献   

13.
镧助剂对铜硅催化剂结构及其甘油氢解性能影响研究   总被引:2,自引:0,他引:2  
在沉淀凝胶法制备的Cu/SiO2催化剂中采用浸渍法添加La助剂,制备了一系列不同La含量的Cu-La2O3/SiO2催化剂,利用BET、XRD、TPR、XPS和TEM对催化剂进行了系统表征,并在高压反应釜中对其进行了甘油氢解制备1,2-丙二醇活性评价,研究了La含量对催化剂高温热稳定性及甘油氢解活性的影响.结果表明:适量La的引入能明显抑制催化剂的高温烧结,维持催化剂的大比表面及活性组分的高分散,提高催化剂的结构稳定性;同时对减少反应过程中活性组分的流失也有很好的效果.铜镧之间存在着协同作用,经高温焙烧后得到加强,对Cu/SiO2催化剂的甘油氢解活性有很好的促进作用.  相似文献   

14.
The vapor-phase synthesis of 3-methylindole over Ag/SiO2 doped with ZnO was investigated. The catalysts were characterized by XRD, H2- TPR, NH3-TPD and TG techniques. The results indicated that ZnO promoter greatly enhanced the initial activity of the catalyst but disfavored its stability. H2-TPR and XRD results showed that the reduction peak of Ag2O shifted to higher temperature and the intensity of silver diffraction peaks was much weaker after the addition of ZnO promoter to Ag/SiO2. This indicated that there existed the interaction between Ag2O and SiO2-ZnO which promoted the silver particles dispersing on the support and inhibited the sintering of silver during the reaction. NH3-TPD and TG results revealed that the acid amounts of the catalyst and coking increased after adding ZnO to Ag/SiO2, which resulted in the deactivation of Ag/SiO2-ZnO catalyst rapidly.  相似文献   

15.
Here,Ag_2S nanoparticles on reduced graphene oxide(Ag_2S NPs/RGO) nanocomposites with relatively good distribution are synthesized for the first time by conversing Ag NPs/RGO to Ag_2S NPs/RGO via a facile hydrothermal sulfurization method.As an noval catalyst for the reduction of 4-nitrophenol(4-NP),it only takes 5 min for Ag_2S NPs/RGO to reduce 98% of 4-NP,and the rate constant of the composites is almost 13 times higher than that of Ag NPs/RGO composites.The high catalytic activity of Ag_2S NPs/RGO can be attributed to the following three reasons:(1) Like metal complex catalysts,the Ag_2S NPs is also rich with metal center Ag(δ~+),with pendant base S(δ) close to it,and thus the Ag and basic S function as the electron-acceptor and proton-acceptor centers,respectively,which facilitates the catalyst reaction;(2)RGO features the high adsorption ability toward 4-NP which provides a high concentration of 4-NP near the Ag_2S NPs;and(3) electron transfer from RGO to Ag_2S NPs,facilitating the uptake of electrons by 4-NP molecules.  相似文献   

16.
《先进技术聚合物》2018,29(1):61-68
Bio‐based nanocomposites of poly (butylene adipate‐co‐terephthalate) (PBAT)/silver oxide (Ag2O) were prepared by the composite film casting method using chloroform as the solvent. The prepared Ag2O at different ratios (1, 3, 5, 7, and 10 wt%) is incorporated in the PBAT. The PBAT nanocomposite films were subjected to structural, thermal, mechanical, barrier, and antimicrobial properties. The electron micrographs indicated uniform distribution of Ag2O in the PBAT matrix. However, the images indicated agglomeration of Ag2O particles at 10 wt% loading. The thermal stability of the nanocomposite films increased with Ag2O content. The tensile strength and elongation of the composite films were found to be higher than those of PBAT and increased with Ag2O content up to 7 wt%. The PBAT‐based nanocomposite films showed the lower oxygen and water vapor permeability when compared to the PBAT film. Antimicrobial studies were performed against two food pathogenic bacteria, namely, Klebsiella pneumonia and Staphylococcus aureus.  相似文献   

17.
采用聚苯乙烯(PS)微球作为模板剂,经溶胶-凝胶及煅烧后处理的方法制备了三维有序大孔(3DOM)复合材料Ag/ZrO2-TiO2。通过FTIR、XRD、XPS、N2吸附-脱附和SEM-EDS等对其进行了表征。结果显示,经PS微球作用后的复合材料Ag/ZrO2-TiO2具有锐钛矿晶型结构,其Ag以单质形式存在。该复合材料的孔结构高度有序,属三维有序大孔,平均孔直径为120 nm,孔壁由紧密堆积的Ag/ZrO2-TiO2纳米晶粒组成,孔收缩率约为40%。该复合材料表现出较好的紫外光催化降解水杨酸和甲基橙等染料性能,其活性明显高于商用光催化剂(Degussa P-25)、Ag/ZrO2-TiO2和3DOM ZrO2-TiO2,在90 min内对甲基橙的降解率达80.1%。  相似文献   

18.
In the present work, a remarkable combination of non-thermal plasma and photocatalyst was developed to widen the operating temperature window of selective catalytic reduction(SCR) of NOx with CH4, especially to improve the low-temperature removal efficiency of NOx. It was shown that the operating temperature window was significantly widened. Among all the catalysts prepared, 1%Ag2O/TiO2 showed the highest catalytic activity for NOx removal due to the utilization of near ultraviolet light. The conversion of NOx to N2 over the in-plasma 1%Ag2O/TiO2 photocatalyst at 60 and 300℃ could achieve 31.8% and 53.0%, respectively. The combination mode of plasma and catalyst affected NOx removal efficiency greatly, the in-plasma catalysis outperformed the post-plasma catalytic mode remarkably, signifying the contribution of photocatalytic processes on the catalysts. Meanwhile, the characterizations of the catalyst demonstrated that the morphology and structure of the Ag2O/TiO2 catalyst were unchanged throughout the non-thermal plasma and photocatalytic processes, implying the superior stability of the catalyst.  相似文献   

19.
A new kind of gold nanoparticles/self-doped polyaniline nanofibers (Au/SPAN) with grooves has been prepared for the immobilization of horseradish peroxidase (HRP) on the surface of glassy carbon electrode (GCE). The ratio of gold in the composite nanofibers was up to 64%, which could promote the conductivity and biocompatibility of SPAN and increase the immobilized amount of HRP molecules greatly. The electrode exhibits enhanced electrocatalytic activity in the reduction of H2O2 in the presence of the mediator hydroquinone (HQ). The effects of concentration of HQ, solution pH and the working potential on the current response of the modified electrode toward H2O2 were optimized to obtain the maximal sensitivity. The proposed biosensor exhibited a good linear response in the range from 10 to 2000 μM with a detection limit of 1.6 μM (S/N = 3) under the optimum conditions. The response showed Michaelis–Menten behavior at larger H2O2 concentrations, and the apparent Michaelis–Menten constant Km was estimated to be 2.21 mM. The detection of H2O2 concentration in real sample showed acceptable accuracy with the traditional potassium permanganate titration.  相似文献   

20.
Pd/Ag/α-Al2O3 composite membranes were prepared by sequential electroless plating technique. The prepared membranes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy, and inductively coupled plasma atomic emission spectroscopy techniques (ICP-AES). Effects of annealing time, Ag content, and air treatment on the hydrogen permeation flux and morphology of the alloys were investigated. The results of the investigation showed that the prepared type of tube had a good potential as substrate for membrane preparation. In addition, a uniform defect-free alloy was prepared by annealing at 550 ℃ in H2 atmosphere. The permeation results showed an increase in H2 permeation flux by increasing the Ag content and the annealing time. In addition, the air treatment of the prepared membranes at 400 ℃ for 1 h changed the morphology of the alloy and substantially enhanced the hydrogen flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号