首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The extraction of two pyrethroid insecticides (deltamethrin and α-cypermethrin) together with three organophosphorus insecticides (dimethoate, diazinon and malathion) from soil samples was carried out with microwave-assisted technology. Experimental designs showed that extraction temperature, addition of water to the extractant and solvent/soil ratio were the variables that affected the recoveries of the pesticide the most. Response surface methodology was applied to find the optimum values of the variables involved in the extractions of the analytes. In addition, in order to achieve near-optimal extraction conditions, a desirability function was used to optimize the five pesticides simultaneously. The optimized conditions were applied to different types of soils.  相似文献   

2.
A novel method, modified matrix solid-phase dispersion (MMSPD), has been developed for quantitative analysis of organophosphorus pesticide residues in soil. It was based on matrix solid-phase dispersion (MSPD) and continuous liquid-solid extraction (continuous LSE), using Florisil as sorbent and dichloromethane as the recycling solvent. Two soils with different texture and physicochemical properties were studied to validate the method. The effect of residence time of pesticides in soil was also studied. MMSPD was compared with MSPD and continuous LSE respectively. Determination was carried out by gas chromatography with nitrogen-phosphorus detection (GC-NPD). The method gave recoveries ranging from 72–105% with relative standard deviations (RSDs) lower than 15% for the pesticides studied. The limits of detection (LODs) ranged from 0.1 to 0.6 ng g−1. Two pesticide residues have been detected in real soil samples from Fujian, China, using MMSPD. The pesticides were confirmed by gas chromatography-mass spectrometry (GC-MS) in a selected-ion monitoring (SIM) mode. Revised: 4 and 9 April 2006  相似文献   

3.
In this study a laboratory-made superheated water system was applied in order to extract some pesticides from sand, sediment and soil samples. Extraction efficiencies were investigated at different time intervals with regard to temperature, type and amount of organic modifier. Pesticides were removed from the aqueous extract using dichloromethane as a trapping solvent. The optimal extraction temperature from sand specimens for malathion, heptachlor, aldrin, dieldrin, butachlor, metalaxyl and propiconazole was found to be 160 °C, while those for chlordane and thiobencarb were 120 °C and 180 °C, respectively. The static extraction time for heptachlor, aldrin, dieldrin, butachlor and metalaxyl was found to be 15 min, whereas for malathion and thiobencarb it was 5 min, and for chlordane and propiconazole it was 10 and 20 min, respectively. Recoveries for the extractions of the pesticides from sand under optimized extraction conditions ranged between 96 and 101%. Those obtained from sediment under such conditions were unsatisfactory, and were consequently improved by adding an organic modifier to the superheated water, and sodium chloride to the extract during liquid-liquid extraction. These procedures were optimized further for the parameters described and recoveries exceeded 91%, with the exception of butachlor. The extraction technique was also applied to soil samples at a reduced water flow rate of 0.5 mL min−1, yielding recoveries of 82–105%, and 76% for dieldrin. The reproducibilities, expressed as relative standard deviations (RSDs), ranged between 2 and 13%.  相似文献   

4.
A novel method of determining organochlorine pesticides (OCPs) is described. It is based on solid-phase microextraction (SPME) and gas chromatography–electron capture detection. During the development of the method, soil samples were prepared, spiked with standard solution, and then aged for some time. Extraction conditions such as the extraction time, the NaCl content, the volume of water, the extraction temperature and the desorption time were investigated and optimized. The limits of detection obtained using the method ranged from 0.10 to 0.51 ng g−1, and relative standard deviations were lower than 10% for most organochlorine pesticides. Real soil samples were successfully analyzed using the proposed method. The results from the method developed here were in good agreement with those obtained using ultrasonic extraction. The result demonstrates that aging soils spiked with standard solution is an important method development step, because the soil samples obtained using this approach are more like real soils than those obtained when aging is not used.   相似文献   

5.
This research has evaluated the agricultural impact of the use of pesticides in small agricultural areas in the Águeda river basin, which straddles the Spanish-Portuguese border. Sixteen pesticides frequently used in the area, including herbicides, fungicides and insecticides and some of their degradation products, were monitored in 52 groundwater samples and 42 soil samples taken around them, using a developed multi-residual analytical method based on SPE-LC-MS. Sampling was carried out in two different seasons (winter and summer). The results indicated the presence of pesticides at several levels, both in groundwaters and soils. Thirteen of the pesticides studied were detected in one or more of the groundwater samples analysed, but only three pesticides were detected in the soil samples. Terbuthylazine, cyprodinil, tebuconazole and chlorpyrifos were the pesticides most frequently detected in groundwaters, whereas terbuthylazine, metalaxyl and tebuconazole were the sole compounds detected in soils. The distribution of the concentrations in groundwaters indicated that up to 80% and 70% of the samples collected in the summer on the Spanish and Portuguese sides, respectively, exceed the quality standards of 0.1 µg L?1 for one or more individual compounds and, in turn, up to 64% and 40% exceed the quality standards of 0.5 µg L?1 for all compounds. The presence of pesticide residues in the groundwaters and soils analysed may well be explained by the use of these compounds in agricultural practices.  相似文献   

6.
In the present study a multi-residue analytical method was developed for monitoring some polar pesticides such as acephate, methamidophos, carbofuran, isoproturon, dimethoate in water with SPE (solid-phase extraction) and LC–MS–MS. Acetochlor was taken as surrogate, and alachlor as internal standard. SPE with different types of columns was compared with LLE (liquid-liquid extraction). Further, the breakthrough volume for different pesticides was determined. The results showed that the selected pesticides can be determined very sensitively with LC–MS–MS. The minimum detectable quantity (MDQ) for each pesticide was about 1.0 ng. To date, SPE cartridge studies showed that the Oasis HLB cartridges were suitable for further studies. However, for Oasis HLB cartridge, different pesticide showed different breakthrough volume. The results showed that for acephate and methamidophos, the breakthrough volume was about 30 mL of water sample, much less than the breakthrough volume of other pesticides studied. Because of the higher vapor pressure and higher Henry's constant of methamidophos, dimethoate and carbofuran, much attention should be paid on their losses in the evaporation step of the experiment. This analytical method can be applied to determine pesticide contamination in environmental water samples. Revised: 12 September 2005 and 21 October 2005  相似文献   

7.
Di‐(2‐ethylhexyl)phthalate (DEHP) was determined in environmental samples such as water and soil. DEHP was extracted from water samples using SPE, whereas for soils pressurized liquid extraction was applied as extraction method, using hexane/acetone (1:1, v/v) as extractant solvent. The use of HPLC coupled to MS provides the basis of the selective determination of DEHP in the analyzed samples. The extraction procedures were validated and good results were found. Recoveries were ranged from 86.0 to 99.8% with RSD lower than 18% and LODs were 0.02 mg/kg and 0.03 μg/L for soils and water, respectively. Finally, the optimized methods were applied to the analysis of real samples and DEHP was not found above the LOQ (0.05 mg/kg) in soil samples whereas it was detected in water samples at concentrations ranging between 0.19 to 0.88 μg/L.  相似文献   

8.
This study reports on the development of a fast and efficient method based on headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography–tandem mass spectrometry (GC–MS/MS) for simultaneous analysis of 128 volatile or semi-volatile pesticide residues belonging to nine classes of pesticides. The important factors related to HS-SPME performance were optimized; these factors include fiber types, water volume, ion strength, extraction temperature, and extraction time. The best extraction conditions include a PDMS/DVB fiber, and analytes were extracted at 90 °C for 60 min from 1 g of tea added to 5 mL of 0.2 g mL?1 NaCl solution. The methodology was validated using tea samples spiked with pesticides at three concentration levels (10, 50, and 100 μg kg?1). In green tea, oolong tea, black tea, and puer tea, 82.8, 88.3, 79.7, and 84.3% of the targeted pesticides meet recoveries ranging from 70 to 120% with a relative standard deviation of?≤?20%, respectively, when spiked at a level of 10 μg kg?1. Limits of quantification in this method for most of the pesticides were 1 or 5 μg kg?1, which are far below their maximum residue limits prescribed by EU. The optimized method was employed to analyze 30 commercial samples obtained from local markets; 17 pesticide residues were detected at concentrations of 2–452 μg kg?1. Chlorpyrifos was the most detected pesticide in 80% of the samples, and the highest concentration of dicofol (452 μg kg?1) was found in a puer tea. This is the first time to find that the optimized extraction temperature for pesticide residues is 90 °C, which is much higher than other reported HS-SPME extraction conditions in tea samples. This developed method could be used to screen over one hundred volatile or semi-volatile pesticide residues which belong to multiple classes in tea samples, and it is an accurate and reliable technique.  相似文献   

9.
The European Union specificies that drinking water can contain pesticide residues at concentrations of up to 0.1 μg/L each and 0.5 μg/L in total, and that 1–3 μg/L of pesticides can be present in surface water, but the general idea is to keep discharges, emissions and losses of priority hazardous substances close to zero for synthetic substances. Therefore, in order to monitor pesticide levels in water, analytical methods with low quantification limits are required. The method proposed here is based on solid phase extraction (SPE) followed by gas chromatography with a nitrogen–phosphorous detector (GC-NPD). During method development, six organophosphate pesticides (azinphos-ethyl, chlorfenvinphos, chlorpyriphos, ethoprophos, fenamiphos and malathion) and two organonitrogen pesticides (alachlor and deltamethrin) were considered as target analytes. Elution conditions that could influence the efficiency of the SPE were studied. The optimized methodology exhibited good linearity, with determination coefficients of better than 0.996. The analytical recovery for the target analytes ranged from 70 to 100%, while the within-day precision was 4.0–11.5 %. The data also showed that the nature of the aqueous matrice (ultrapure, surface or drinking water) had no significant effect on the recovery. The quantification limits for the analytes were found to be 0.01–0.13 μg/L (except for deltamethrin, which was 1.0 μg/L). The present methodology is easy, rapid and gives better sensitivity than solvent drop microextraction for the determination of organonitrogen and organophosphate pesticides in drinking water at levels associated with the legislation.  相似文献   

10.
A procedure for multiresidue analysis was developed for the extraction and determination of 17 pesticides, including herbicides, fungicides, and insecticides, as well as certain degradation products, in vineyard soils from La Rioja region (Spain). Different solvents and mixtures were tested in spiked pesticide‐free soils, and pesticides were comparatively evaluated by gas chromatography with mass spectrometry and liquid chromatography with mass spectrometry. Recoveries >70%, with relative standard deviations <9%, were obtained when a mixture of methanol/acetone or a mixture of methanol/CaCl2 0.01 M for the most polar compounds was selected as the extraction solvent. Method validation was accomplished with acceptable linearity (r2 ≥ 0.987) within the concentration range of 0.005–1 μg/mL corresponding to 1.667–333.4 μg/kg and 0.835–167.1 μg/kg for liquid chromatography with mass spectrometry and gas chromatography with mass spectrometry, respectively, and detection limits <0.4 μg/kg for the compounds were studied. The extraction method was applied to 17 real vineyard soil samples, and terbuthylazine and its metabolite desethylterbuthylazine were the most ubiquitous compounds, as they were detected in the 100% of the soils analyzed. The presence of fungicides was also high, and the presence of insecticides was lower than other pesticides. The results confirm the usefulness of the optimized procedure for monitoring residues in vineyard soils.  相似文献   

11.
A solid-phase microextraction (SPME) procedure using two commercial fibers coupled with high-performance liquid chromatography (HPLC) is presented for the extraction and determination of organochlorine pesticides in water samples. We have evaluated the extraction efficiency of this kind of compound using two different fibers: 60-μm polydimethylsiloxane–divinylbenzene (PDMS-DVB) and Carbowax/TPR-100 (CW/TPR). Parameters involved in the extraction and desorption procedures (e.g. extraction time, ionic strength, extraction temperature, desorption and soaking time) were studied and optimized to achieve the maximum efficiency. Results indicate that both PDMS-DVB and CW/TPR fibers are suitable for the extraction of this type of compound, and a simple calibration curve method based on simple aqueous standards can be used. All the correlation coefficients were better than 0.9950, and the RSDs ranged from 7% to 13% for 60-μm PDMS-DVB fiber and from 3% to 10% for CW/TPR fiber. Optimized procedures were applied to the determination of a mixture of six organochlorine pesticides in environmental liquid samples (sea, sewage and ground waters), employing HPLC with UV-diode array detector.  相似文献   

12.
Nonionic surfactants e.g. alcohol ethoxylates (AEOs) and alkylamine ethoxylates (ANEOs) are commonly utilised as adjuvants in pesticide formulations to enhance their effectiveness. In this study, analytical methods for AEO and ANEO determination in soil samples using pressurised liquid extraction (PLE) were developed and used in connection with LC–MS. The recovery of the method, which was highly dependent on the soil properties, varied in the range 47–106% for AEO and 27–109% for ANEO. Detection limits (LOD) were 7–13 µg kg–1 for AEO and 24–43 µg kg–1 for ANEO. The developed method has been applied to determine AEOs and ANEOs in surface soil samples from fields sprayed with glyphosate herbicides. Tallowalkylamine ethoxylates (an ANEO) were detected in the soil before and after pesticide application, with increasing concentrations after treatment. The highest concentration in the soil samples was observed for the ANEO homologues with the longest ethoxy chains; in the clay soil the concentration decreased with the length of the ethoxy chain. ANEOs added to pesticide formulations as a technical mixture will, as demonstrated in this study, behave as individual homologues, which is reflected in their behaviour in the environment.Abbreviations AEO Alcohol ethoxylates - ANEO Alkylamine ethoxylates - APEO Alkylphenol ethoxylates - APCI Atmospheric pressure chemical ionisation - ASE Accelerated solvent extraction - CEC Cationic exchange capacity - LC–MS Liquid chromatography–mass spectrometry - LOD Limit of detection - MAE Microwave-assisted extraction - PLE Pressurised liquid extraction - SD Standard deviation - SIM Selected-ion monitoring - SPE Solid-phase extraction - TEA Triethylamine  相似文献   

13.
A method for analysis of 20 commonly used pesticides in surface water based on solid-phase extraction and gas chromatography-mass spectrometry was proposed. During method development the key parameters that can affect SPE extraction and determination such as selection of efficient SPE sorbent, pH of water sample, type and volume of elution solvent, breakthrough volume and matrix effects were investigated. The method was validated using spring water spiked with appropriate concentration of pesticides. The obtained correlation coefficients were in range 0.9972–1.000, limits of detection (LOD) were 0.001–0.5?µg?L?1 and the limits of quantification (LOQ) were 0.005–1?µg?L?1 depending on a pesticide. Much higher LOD (20?µg?L?1) and LOQ (50?µg?L?1) values were obtained for bentazone. The influence of matrix was assessed using real water samples spiked with appropriate concentration of pesticide standards solution. Both signal enhancement and suppression were observed, depending on a pesticide, therefore standard addition method was used for pesticides determination. The developed method was applied on real water samples taken in close vicinity of agricultural fields. Many of the targeted pesticides were found in the samples and the results are presented in this article.  相似文献   

14.
Three types of solvent extraction methods (by soxhlet, sonicator and microwave) for pesticide recoveries in solid matrices were compared and evaluated using the standard addition method. Variables (solvent and extraction time) for the optimization of microwave assisted extraction (MAE) were also studied. Three organochlorine pesticides (BHC, DDE, and Dildrin) were chosen for this particular study because of their great presence in the soil where the samples were collected and their positive association with the risk of breast cancer. Comparison of the results obtained indicates that the efficiency of extraction varies, depending on the matrices and the pesticides analyzed. The study focused on the variation in the extraction quantities of different methods in different matrices. The extraction conditions were optimized for MAE with a single matrix (bark) and applied to the rest in order to study the variability in results. Gas chromatography with an electron capture detector (GC–ECD) was used for analysis of the extracts. The results show that even though the use of MAE improved extraction in some of the matrices studied, the extraction method must be optimized whenever a new matrix is evaluated. A statistical comparison indicated that pesticide recoveries and method reproducibility of microwave extraction compared less favorably with the conventional soxhlet method in some of the matrices, whereas the sonicator method was not found to be as efficient as the others.  相似文献   

15.
Summary A method for determination of trace amounts of the pesticides tebufenpyrad and oxadiazon, previous solid-phase microextraction (SPME), was developed using gas chromatographymass spectrometry and selected ion monitoring (GC-MS; SIM). Both pesticides were extracted with a fused silica fiber coated with 100 μm polydimethylsiloxane. The effects of pH ionic strength, sample volume, extraction and desorption times as well as extraction temperature were studied. The linear concentration range of application was 0.5–250 ng mL−1 for both compounds, with a detection limit of 0.06 ng mL−1 for tebufenpyrad and 0.02 ng mL−1 for oxadiazon. SPME-GC-MS analysis yielded good reproducibility (RSD between 7.5–10.1%). It was used to check the eventual existence of tebufenpyrad and oxadiazon above this limit in water and soil samples from Granada (Spain) as well as in human urine samples. The method validation was completed with spiked matrix samples. It can be applied as a monitoring tool for water, soil and urine in the investigation of environmental and occupational exposure to tebufenpyrad and oxadiazon.  相似文献   

16.
Summary A monitoring programme based on gas chromatography (NPD, ECD) using MSD for confirmatory purposes and coupled-column liquid chromatography was applied to the analysis of pesticide residues in surface water from a predominantly agricultural area of Spain (Comunidad Valenciana). Samples analysed by means of enzyme-linked immunosorbent assay gave similar results to those obtained by GC (MSD) for the determination of total triazines. The test employed had the advantages of a simple test procedure, short analysis time and high confirmatory value. Nevertheless, the multiresidue character, accuracy and unequivocal identification of individual pesticide residues of GC (MSD) make this technique the most appropriate for environmental monitoring programmes. In this monitoring programme about 200 samples were analysed between 1993–1994. 27 different pesticides were detected in 91 of these samples. The pesticides more frequently detected were dimethoate, methidathion, endosulfan A and B, endosulfan sulphate and pirimicarb. The highest concentrations found were 39.9 g L–1 of dimethoate, 10.6 of pirimicarb and 10.6 of methidathion.  相似文献   

17.
A new procedure for determining eleven organochlorine pesticides in soils using microwave-assisted extraction (MAE) and headspace solid phase microextraction (HS-SPME) is described. The studied pesticides consisted of mirex, α- and γ-chlordane, p,p′-DDT, heptachlor, heptachlor epoxide isomer A, γ-hexachlorocyclohexane, dieldrin, endrin, aldrine and hexachlorobenzene. The HS-SPME was optimized for the most important parameters such as extraction time, sample volume and temperature. The present analytical procedure requires a reduced volume of organic solvents and avoids the need for extract clean-up steps. For optimized conditions the limits of detection for the method ranged from 0.02 to 3.6 ng/g, intermediate precision ranged from 14 to 36% (as CV%), and the recovery from 8 up to 51%. The proposed methodology can be used in the rapid screening of soil for the presence of the selected pesticides, and was applied to landfill soil samples.  相似文献   

18.
An efficient and sensitive method for simultaneous determination of 118 pesticide residues in teas has been established and validated. A multi-residue analysis of pesticides in tea involved extraction with ethyl acetate-hexane, clean-up using gel permeation chromatography (GPC) and solidphase extraction (SPE), and subsequent identification and quantification of the selected pesticides by gas chromatography-mass spectrometry (GC-MS). For most of the target analytes, optimized pretreatment processes led to no significant interference with analysis of sample matrix, and the determination of 118 compounds was achieved in about 60 min. In the linear range of each pesticide, the correlation coefficient was R 2 ≥ 0.99. At the low, medium and high three fortification levels of 0.05–2.5 mg kg−1, 118 pesticides average recoveries range from 61 % to 121 % and relative standard deviations (RSD) were in the range of 0.6–9.2 % for all analytes. The limits of detection for the method were 0.00030-0.36 mg kg−1, depending on each pesticide.  相似文献   

19.
This work compares two miniaturised sample preparation methods, solid phase microextraction (SPME) and hollow fiber liquid phase microextraction (HF-LPME), in combination with gas chromatography coupled to tandem mass spectrometry with a triple quadrupole analyzer for the determination of 77 pesticides in drinking water. In the case of SPME, extraction temperature and time were optimized by experimental design, although other parameters, as desorption time, pH, and ionic strength, were also evaluated. The extraction and desorption solvents [octanol/dihexyl ether (75:25, v/v) and cyclohexane, respectively], as well as the extraction and desorption time, ionic strength, and pH, were studied for the HF-LPME procedure. Under the optimal conditions, recoveries (70.2–113.5% for SPME and 70.0–119.5% for HF-LPME), intra-day precision (2.1–19.4% for SPME and 4.3–22.5% for HF-LPME), inter-day precision (5.2–21.5% for SPME and 8.4–27.3% for HF-LPME), and limits of detection, between 0.1 and 28.8 ng/L for SPME and 0.2 and 47.1 ng/L for HF-LPME and overall uncertainty (9.6–25.2% for SPME and 13.3–27.5% for HF-LPME) were established for both extraction procedures. Finally, the proposed methods were successfully applied to the analysis of 41 drinking water samples, and similar results were obtained with both extraction approaches.  相似文献   

20.
An analytical method based on dispersive solid‐phase extraction with a multiwalled carbon nanotubes sorbent coupled with positive pulse glow discharge ion mobility spectrometry was developed for analysis of 30 pesticide residues in drinking water samples. Reduced ion mobilities and the mass–mobility correlation of 30 pesticides were measured. The pesticides were divided into five groups to verify the separation capability of pulse glow discharge in mobility spectrometry. The extraction conditions such as desorption solvent, ionic strength, conditions of adsorption and desorption, the amounts of multiwalled carbon nanotubes, and solution pH were optimized. The enrichment factors of pesticides were 5.4‐ to 48.7‐fold (theoretical enrichment factor was 50‐fold). The detection limits of pesticides were 0.01~0.77 μg/kg. The linear range was 0.005–0.2 mg/L for pesticide standard solutions, with determination coefficients from 0.9616 to 0.9999. The method was applied for the analysis of practical and spiked drinking water samples. All results were confirmed by high‐performance liquid chromatography with tandem mass spectrometry. The proposed method was proven to be a commendably rapid screening qualitative and semiquantitative technique for the analysis of pesticide residues in drinking water samples on site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号