首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Free standing ferroelectric films in a rotating electric field have been investigated. Depending upon the applied voltage and the period of the field rotation different structure formations could be observed. At high fields, a homogeneous orientation is obtained. In the case of very low fields, a schlieren texture results. Under special conditions, a stable ring system appears. The dynamics of these rings have been studied. The dependence of the structure formation on the relation between the impulse length of the applied field and the reorientation time is discussed.  相似文献   

2.
The transient process of an electrorheological (ER) fluid based on zeolite and silicone oil sheared between two parallel plates to which a square-wave electric field is applied has been experimentally studied. The transient shear stress response to the strain or time is tested. The characteristic constants of time under different applied electric fields and shear rates have been determined. The response time is found to be proportional to shear rate with an exponent of about -0.75 in the tested shear rate range, which agrees with the theoretical predictions made by others. But it only shows a small dependence on the strength of the applied electric field. The results show that the transient process of ER fluids is related to the structure formation in the shearing. When the required shear strain is reached, the shear stress rises to a stable value under constant electric field. Although the electric field strength greatly affects the yield strength, it shows little effect on the stress response time. Also, experiments showed the electric field-induced shear stress decreased with an increase of shear rate.  相似文献   

3.
The microstructure of an epoxy system oriented in high magnetic fields (15–25 T) has been observed to consist of highly oriented domains at the molecular level along the direction of the applied field. The changes in the microstructure have been characterized as a function of the magnetic‐field strength and have been investigated microscopically and with wide‐angle X‐ray diffraction. The mechanical properties of the epoxy have been examined in light of nanoindentation experiments at different load levels. The basic results of the experimental investigations for the effect of high magnetic fields on the structure and property of the epoxy are presented. Nanoindentation testing has revealed large differences in the nanomechanical behavior for thermomagnetically processed epoxy specimens. The differences can be ascribed to the microstructural changes (reorientation) of the polymer at the molecular level. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1586–1600, 2004  相似文献   

4.
We study the dynamics of dust particles in a stratified glow discharge in inhomogeneous magnetic fields. Dust structures are formed in standing striations, in which traps for dust particles arise. When a magnetic field is applied, these structures begin to rotate. The observations were carried out in striations near the end of the solenoid, where the region of an inhomogeneous magnetic field begins. With an increase in the magnetic field, the dusty structure can be deformed. The rotation of a dusty structure in an inhomogeneous magnetic field has been studied in detail; it has its own peculiarities in comparison with rotation in a uniform field. We have considered the mechanisms of such rotation and estimated its velocity.  相似文献   

5.
The structure of diblock copolymer melts under a single external electric or shear field, as well as under combined orthogonal external fields was investigated using a cell dynamic system. The phase structure was determined by coupling the effects of the external fields with the original structure of the bulk free of external fields. The single electric or shear field generated long-range cylinders in asymmetric A4mB6m diblock copolymers and distorted lamellae in symmetric A5mB5m diblock copolymers. Successive orthogonal shear followed by an electric external field generated long-range lamellae in symmetrical A5mB5m systems. However, the simultaneous orthogonal electric and shear fields could more easily form long-range lamellae than the sequential orthogonal fields. The dynamical processes in diblock copolymer melts under orthogonal fields have been also examined.  相似文献   

6.
Hartree–Fock self-consistent field calculations on the 3-21G(*) level of approximation have been performed to phosphorylcholine and its derivatives in a geometry close to an X-ray structure of an antibody/antigen complex. Wave functions have been analyzed using different methods for derivation of atomic charges used as Coulomb charges in empirical force fields for molecular dynamics simulations. Among the three applied methods—Mulliken population analysis, natural population analysis, and electrostatical fit—the natural population analysis seems to give best results for these molecules.  相似文献   

7.
Magnetorheological Elastomers (MREs) are “smart” materials whose physical properties are altered by the application of magnetic fields. In previous studies the properties of MREs have been evaluated under a variety of conditions, however little attention has been paid to the recording and reporting of the magnetic fields used in these tests [1]. Currently there is no standard accepted method for specifying the magnetic field applied during MRE testing. This study presents a detailed map of a magnetic field applied during MRE tests as well as providing the first comparative results for uniaxial and biaxial testing under high strain fatigue test conditions. Both uniaxial tension tests and equi-biaxial bubble inflation tests were performed on isotropic natural rubber MREs using the same magnetic fields having magnetic flux densities up to 206 mT. The samples were cycled between pre-set strain limits. The magnetic field was switched on for a number of consecutive cycles and off for the same number of following cycles. The resultant change in stress due to the application and removal of the magnetic field was recorded and results are presented.  相似文献   

8.
Nonequilibrium molecular dynamics simulations of hen egg white lysozyme have been performed in the canonical ensemble at 298 K in the presence of external electromagnetic fields of varying intensity in the microwave to far-infrared frequency range. Significant nonthermal field effects were noted, such as marked changes in the protein's secondary structure which led to accelerated incipient local denaturation relative to zero-field conditions. This occurred primarily as a consequence of alignment of the protein's total dipole moment with the external field, although the enhanced molecular mobility and dipolar alignment of water molecules is influential on sidechain motion in solvent-exposed regions. The applied field intensity was found to be highly influential on the extent of denaturation in the frequency range studied, and 0.25-0.5 V Arms-1 fields were found to induce initial denaturation to a comparable extent to thermal denaturation in the 400 to 500 K range. In subsequent zero-field simulations following exposure to the e/m field, the extent of perturbation from the native fold and the degree of residual dipolar alignment were found to be influential on incipient folding.  相似文献   

9.
A study of the electronic and optical properties of coupled double quantum wells is presented. Within the framework of the effective mass and parabolic-band approximations we have calculated the electron–hole and photoluminescence energy transitions under simultaneous effects of electric and magnetic fields. For that purpose, a variational procedure has been used, taking into account the effect of hydrostatic pressure. The electric field is taken to be oriented along the growth direction of the heterostructure whereas for the magnetic field both in-plane and in-growth directions have been considered. The results show that hydrostatic pressure is a useful tool to tune the direct and indirect exciton transitions in such heterostructures. It is shown that the photoluminescence peak energy transitions strongly depend on the external fields and hydrostatic pressure studied here. Furthermore, our numerical outcome is in good agreement with previous experimental findings at zero pressure in double quantum wells under applied electric and magnetic fields.  相似文献   

10.
Analytical solutions for the electric field of radiofrequency (RF) carpets are presented. The formulas have been applied to calculate the effective repulsive potential with the Dehmelt model. The resulting formulas have been used to investigate operational conditions such as the average distance of ions from the carpet in the presence of an attractive static electric field.The equations of motion of ions in the electric fields have been integrated using the developed formulas to determine the parameter space for carpet operation. The operational parameters have been reduced to three dimensionless parameters and a stability analysis is carried out in these terms.  相似文献   

11.
Monte Carlo simulations of the effects of weak magnetic fields on the recombination of interacting radical pairs undergoing free diffusion in solution have been performed, with the aim of determining the influence on the low field effect of the magnetic dipolar coupling between the radicals. The suppression of singlet-triplet interconversion in the radical pair by the dipolar interaction is found to be pronounced at magnetic field strengths comparable to the hyperfine interactions in the radicals, to the extent that the low field effect is completely abolished. The averaging of the dipolar coupling by the translational diffusion of the radicals around one another is relatively efficient in the presence of strong magnetic fields but becomes ineffective in weak applied fields where the strength of the dipolar interaction is independent of the orientation of the inter-radical vector. Low field effects are only likely to be observed if the motion of the radical pair is restricted in some way so as to increase the likelihood that, having separated to the large distance required for the dipolar interaction to have a negligible effect, the radicals subsequently encounter and have the opportunity to recombine.  相似文献   

12.
疏水化淀粉衍生物研究进展   总被引:4,自引:0,他引:4  
李本植  尹荃  张淑芬  杨锦宗 《化学通报》2007,70(10):727-733
淀粉化学品已广泛应用于各行各业,但由于传统淀粉化学品只有单一的亲水性,应用受到限制。淀粉的疏水化改性是提高淀粉化学品应用性能、赋予淀粉新的性能和功能性、进而拓宽淀粉化学品应用领域的重要方法,淀粉的疏水化改性已成为目前国内外的研究热点。本文综述了近年来制备的新的疏水化淀粉衍生物及其制备新工艺和性能研究方面的进展。  相似文献   

13.
The magnetization versus temperature behavior of USe has been investigated in the temperature range from 2.8 to 300°K and in various applied fields up to 21 kOe. A sharp decrease in magnetization is found at low temperatures. This behavior seems to be associated with the rhombohedral distortion in crystal structure, giving rise to a high anisotropy field, below the Curie temperature. Large magnetic hysteresis effects at low temperatures confirm these arguments.  相似文献   

14.
The interaction Hamiltonian within the Bloch gauge for the potentials of the electric field has been used to define electric multipole moment operators. Perturbation theory has been applied to evaluate the induced electronic moments and electric field at the nuclei in the presence of spatially non-uniform electric fields of high intensity. Multipole nuclear electric shielding tensors have been defined to describe the contributions arising from a non-homogeneous electric field. These quantities are useful to rationalize linear and non-linear responses of a molecule in the presence of intense external electric perturbations.  相似文献   

15.
With the continuing advances in computational hardware and novel force fields constructed using quantum mechanics, the outlook for non-additive force fields is promising. Our work in the past several years has demonstrated the utility of polarizable force fields, in our hands those based on the charge equilibration formalism, for a broad range of physical and biophysical systems. We have constructed and applied polarizable force fields for small molecules, proteins, lipids, and lipid bilayers and recently have begun work on carbohydrate force fields. The latter area has been relatively untouched by force field developers with particular focus on polarizable, non-additive interaction potential models. In this review of our recent work, we discuss the formalism we have adopted for implementing the charge equilibration method for phase-dependent polarizable force fields, lipid molecules, and small-molecule carbohydrates. We discuss the methodology, related issues, and briefly discuss results from recent applications of such force fields.  相似文献   

16.
In classical electrokinetics, the electrophoretic velocity of a dielectric particle is a linear function of the applied electric field. Theoretical studies have predicted the onset of nonlinear electrophoresis at high electric fields because of the nonuniform surface conduction over the curved particle. However, experimental studies have been left behind and are insufficient for a fundamental understanding of the parametric effects on nonlinear electrophoresis. We present in this work a systematic experimental study of the effects of buffer concentration, particle size, and particle zeta potential on the electrophoretic velocity of polystyrene particles in a straight rectangular microchannel for electric fields of up to 3 kV/cm. The measured nonlinear electrophoretic particle velocity is found to exhibit a 2(±0.5)-order dependence on the applied electric field, which appears to be within the theoretically predicted 3- and 3/2-order dependences for low and high electric fields, respectively. Moreover, the obtained nonlinear electrophoretic particle mobility increases with decreasing buffer concentration (for the same particle) and particle size (for particles with similar zeta potentials) or increasing particle zeta potential (for particles with similar sizes). These observations are all consistent with the theoretical predictions for high electric fields.  相似文献   

17.
The mechanism of ionization of an H atom interacting with intense laser electric fields is altered when a strong, oscillating magnetic field is applied along a direction parallel to the laser field. In this first study, these two strongly nonperturbative situations have been combined together and the corresponding time‐dependent (TD) Schrödinger equation has been numerically solved without using any basis set. The electric field arising out of the magnetic field and the magnetic field arising out of the laser electric field are found to be negligibly small, thereby not affecting the results. There are two main, apparently counter‐intuitive results from this study of parallel fields of the same frequency but different field strengths: (1) In presence of an oscillating magnetic field, the ionization rate due to the laser field diminishes, and (2) increasing the laser intensity, keeping the magnetic field strength the same, makes the electron density ionize with a lesser rate, in contrast to the situation with intense lasers in the absence of a strong TD magnetic field. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
The interaction Hamiltonian within the Bloch gauge for the potentials of the electromagnetic field has been used to define magnetic multipole moment operators and operators for the magnetic field of electrons acting on the nuclei of a molecule in the presence of nonhomogeneous external magnetic field. Perturbation theory has been applied to evaluate the induced electronic moments and magnetic field at the nuclei. Multipole magnetic susceptibility and nuclear magnetic shielding tensors have been introduced to describe the contributions arising in nonuniform fields, and their origin dependence has been analyzed. Extended numerical tests on the ammonia molecule in a static, nonuniform magnetic field have been carried out, using the random-phase approximation within the framework of accurate Hartree-Fock zero-order wavefunctions, and allowing for both angular momentum and torque formalisms in the calculation of paramagnetic contributions.  相似文献   

19.
Topology and Chemistry   总被引:1,自引:0,他引:1  
Brown  I. David 《Structural chemistry》2002,13(3-4):339-355
The determinants of chemical bonding are the chemical properties of the atoms and the constraints of three-dimensional (3-D) space into which the atoms must fit, but topology provides a convenient way of describing the resultant structure. This paper explores the topologies of various scalar fields associated with atoms in molecules and crystals and what they can tell us about chemical bonding. The scalar fields examined are the electron density, the electrostatic potential, and two simplified electrostatic potentials in which the contributions of the electron cores have been removed, namely the Madelung and the covalent field. Not all of the information contained in these fields is present in the topology but, since the topology is insensitive to the details of the field, it can often be determined using simplified calculations. Although the same topological model is used to explore all four fields, each field has its own distinctive topology and each provides different information about the nature of chemical bonding and structure. The analysis of these topologies, when combined with simple electrostatic theory and a few empirical observations, leads to a quantitative model of localized chemical bonding. In the process, the analysis provides insights into the nature of chemical bonding.  相似文献   

20.
QuickFF is a software package to derive accurate force fields for isolated and complex molecular systems in a quick and easy manner. Apart from its general applicability, the program has been designed to generate force fields for metal‐organic frameworks in an automated fashion. The force field parameters for the covalent interaction are derived from ab initio data. The mathematical expression of the covalent energy is kept simple to ensure robustness and to avoid fitting deficiencies as much as possible. The user needs to produce an equilibrium structure and a Hessian matrix for one or more building units. Afterward, a force field is generated for the system using a three‐step method implemented in QuickFF. The first two steps of the methodology are designed to minimize correlations among the force field parameters. In the last step, the parameters are refined by imposing the force field parameters to reproduce the ab initio Hessian matrix in Cartesian coordinate space as accurate as possible. The method is applied on a set of 1000 organic molecules to show the easiness of the software protocol. To illustrate its application to metal‐organic frameworks (MOFs), QuickFF is used to determine force fields for MIL‐53(Al) and MOF‐5. For both materials, accurate force fields were already generated in literature but they requested a lot of manual interventions. QuickFF is a tool that can easily be used by anyone with a basic knowledge of performing ab initio calculations. As a result, accurate force fields are generated with minimal effort. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号