首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a quantum system coupled to a dissipative background with many degrees of freedom using the Monte Carlo wave function method. Instead of dealing with a density matrix which can be very highly dimensional, the method consists of integrating a stochastic Schr?dinger equation with a non-Hermitian damping term in the evolution operator, and with random quantum jumps. The method is applied to the diffusion of hydrogen on the Ni(111) surface below 100 K. We show that the recent experimental diffusion data for this system can be understood through an interband activation process, followed by quantum tunneling.  相似文献   

2.
Quantum phase slips (QPS) in narrow superfluid channels generate momentum by unwinding the supercurrent. In a uniform Bose gas, this momentum needs to be absorbed by quasiparticles (phonons). We show that this requirement results in an additional exponential suppression of the QPS rate (compared to the rate of QPS induced by a sharply localized perturbation). In BCS-paired fluids, momentum can be transferred to fermionic quasiparticles, and we find an interesting interplay between quasiparticle scattering on QPS and on disorder.  相似文献   

3.
A dynamical model for the collapse of the wave function in a quantum measurement process is proposed by considering the interaction of a quantum system (spin -1/2) with a macroscopic quantum apparatus interacting with an environment in a dissipative manner. The dissipative interaction leads to decoherence in the superposition states of the apparatus, making its behaviour classical in the sense that the density matrix becomes diagonal with time. Since the apparatus is also interacting with the system, the probabilities of the diagonal density matrix are determined by the state vector of the system. We consider a Stern-Gerlach type model, where a spin-1/2 particle is in an inhomogeneous magnetic field, the whole set up being in contact with a large environment. Here we find that the density matrix of the combined system and apparatus becomes diagonal and the momentum of the particle becomes correlated with a spin operator, selected by the choice of the system-apparatus interaction. This allows for a measurement of spin via a momentum measurement on the particle with associated probabilities in accordance with quantum principles.  相似文献   

4.
The problem of the evolution of a heavy quarkonium in a medium can be recast as that of a quantum dissipative system. Within the framework of the master-equation approach to open quantum systems, we consider the real-time dynamics of quarkonia. We find that in a plasma at fixed temperature, the populations of the various quarkonium states evolve together, while their momentum distribution satisfies a Fokker–Planck equation.  相似文献   

5.
We consider a one-dimensional Ising model in a transverse magnetic field coupled to a dissipative heat bath. The phase diagram and the critical exponents are determined from extensive Monte Carlo simulations. It is shown that the character of the quantum phase transition is radically altered from the corresponding nondissipative model and the double well coupled to a dissipative heat bath with linear friction. Spatial couplings and the dissipative dynamics combine to form a new quantum criticality which is independent of dissipation strength.  相似文献   

6.
The qubit (or a system of two quantum dots) has become a standard paradigm for studying quantum information processes. Our focus is decoherence due to interaction of the qubit with its environment, leading to noise. We consider quantum noise generated by a dissipative quantum bath. A detailed comparative study with the results for a classical noise source such as generated by a telegraph process, enables us to set limits on the applicability of this process vis à vis its quantum counterpart, as well as lend handle on the parameters that can be tuned for analysing decoherence. Both Ohmic and non-Ohmic dissipations are treated and appropriate limits are analysed for facilitating comparison with the telegraph process.  相似文献   

7.
We consider a SQUID ring inductively coupled to an electromagnetic field mode, both treated quantum mechanically. We demonstrate a method for creating a maximally entangled state between the ring and the field mode. Our method utilises a non-adiabatic external magnetic flux pulse to move into and out of a transition region. Hence, our approach is fundamentally different to techniques based on Landau–Zener tunnelling that can also be used to achieve similar results. Our analysis is extended to include the effects of coupling the system to a dissipative environment. With this model we show that although such an environment makes a noticeable difference to the time evolution of the system, it need not destroy the entanglement of this coupled system over time scales required for quantum technologies.  相似文献   

8.
The concept of continuous-time random walk is generalized into the quantum approach using a completely positive map. This approach introduces in a phenomenological way the concept of disorder in the transport problem of a quantum open system. If the waiting-time of the continuous-time renewal approach is exponential we recover a semigroup for a dissipative quantum walk. Two models of non-Markovian evolution have been solved considering different types of waiting-time functions.  相似文献   

9.
In this paper the role of the mathematical probability models in the classical and quantum physics is shortly analyzed. In particular the formal structure of the quantum probability spaces (QPS) is contrasted with the usual Kolmogorovian models of probability by putting in evidence the connections between this structure and the fundamental principles of the quantum mechanics. The fact that there is no unique Kolmogorovian model reproducing a QPS is recognized as one of the main reasons of the paradoxical behaviors pointed out in the quantum theory from its early days.Paper written in honor of L. de Broglie.  相似文献   

10.
We discuss the Lindblad equation for the density matrix where the dissipation is linear in the position operator. We consider a potential which is a bounded perturbation of the harmonic oscillator. We show that the perturbation of the potential leads to an analytic perturbation of the Wigner distribution. Then the Wigner distribution of the quantum dissipative system tends (uniformly in time) to the classical phase space distribution of the classical dissipative system (if the initial distribution converges when 0).  相似文献   

11.
We study bilayer quantum Hall systems at total Landau level filling factor nu=1 in the presence of interlayer tunneling and coupling to a dissipative normal fluid. Describing the dynamics of the interlayer phase by an effective quantum dissipative XY model, we show that there exists a critical dissipation sigma(c) set by the conductance of the normal fluid. For sigma>sigma(c), interlayer tunnel splitting drives the system to a nu=1 quantum Hall state. For sigma相似文献   

12.
We propose a transistorlike circuit including two serially connected segments of a narrow superconducting nanowire joint by a wider segment with a capacitively coupled gate in between. This circuit is made of amorphous NbSi film and embedded in a network of on-chip Cr microresistors ensuring a sufficiently high external electromagnetic impedance. Assuming a virtual regime of quantum phase slips (QPS) in two narrow segments of the wire, leading to quantum interference of voltages on these segments, this circuit is dual to the dc SQUID. Our samples demonstrated appreciable Coulomb blockade voltage (analog of critical current of the SQUIDs) and periodic modulation of this blockade by an electrostatic gate (analog of flux modulation in the SQUIDs). The model of this QPS transistor is discussed.  相似文献   

13.
Hilbert–Schmidt and trace norm geometric quantum discord are compared with regard to their behavior during local time evolution. We consider the system of independent two-level atoms with time evolution given by the dissipative process of spontaneous emission. It is explicitly shown that the Hilbert–Schmidt norm discord has nonphysical properties with respect to such local evolution and cannot serve as a reasonable measure of quantum correlations and the better choice is to use trace norm discord as such a measure.  相似文献   

14.
We analyze the effect of the electron-electron interaction on the resistivity of a metal near a Pomeranchuk quantum phase transition (QPT). We show that umklapp processes are not effective near a QPT, and one must consider both interactions and disorder to obtain a finite and T dependent resistivity. By power counting, the correction to the residual resistivity at low T scales as AT((D+2)/3) near a Z=3 QPT. We show, however, that A=0 for a simply connected, convex Fermi surface in 2D, due to the hidden integrability of the electron motion. We argue that A>0 in a two-band (s-d) model and propose this model as an explanation for the observed T((D+2)/3) behavior.  相似文献   

15.
Effects of disorder are examined in itinerant systems close to quantum critical points. We argue that spin fluctuations due to the long-range part of the RKKY interactions generically induce non-Ohmic dissipation due to rare disorder configurations. This dissipative mechanism is found to destabilize quantum Griffiths phase behavior in itinerant systems with arbitrary symmetry of the order parameter, leading to the formation of a "cluster glass" phase preceding uniform ordering.  相似文献   

16.
A symmetric measure of quantum correlation based on the Hilbert-Schmidt distance is presented in this paper. For two-qubit states, we considerably simplify the optimization procedure so that numerical evaluation can be performed efficiently. Analytical expressions for the quantum correlation are attained for some special states. We further investigate the dynamics of quantum correlation of the system qubits in the presence of independent dissipative environments. Several nontrivial aspects are demonstrated. We find that the quantum correlation can increase even if the system state is suffering from dissipative noise. Sudden changes occur, even twice, in the time evolution of quantum correlation. There exists a certain correspondence between the evolution of quantum correlation in the systems and that in the environments, and the quantum correlation in the systems will be transferred into the environments completely and asymptotically.  相似文献   

17.
Angela Kopp 《Annals of Physics》2007,322(6):1466-1476
We propose that quantum phase transitions are generally accompanied by non-analyticities of the von Neumann (entanglement) entropy. In particular, the entropy is non-analytic at the Anderson transition, where it exhibits unusual fractal scaling. We also examine two dissipative quantum systems of considerable interest to the study of decoherence and find that non-analyticities occur if and only if the system undergoes a quantum phase transition.  相似文献   

18.
We introduce superposition-based quantum networks composed of (i) the classical perceptron model of multilayered, feedforward neural networks and (ii) the algebraic model of evolving reticular quantum structures as described in quantum gravity. The main feature of this model is moving from particular neural topologies to a quantum metastructure which embodies many differing topological patterns. Using quantum parallelism, training is possible on superpositions of different network topologies. As a result, not only classical transition functions, but also topology becomes a subject of training. The main feature of our model is that particular neural networks, with different topologies, are quantum states. We consider high-dimensional dissipative quantum structures as candidates for implementation of the model.  相似文献   

19.
We consider the dissipative nonlinear dynamics of a model of interacting atoms driven over a substrate potential. The substrate parameters can be suitably tuned in order to introduce disorder effects starting from two geometrically opposed ideal cases: commensurate and incommensurate interfaces. The role of temperature is also investigated through the inclusion of a stochastic force via a Langevin molecular dynamics approach. Here, we focus on the most interesting tribological case of underdamped sliding dynamics. For different values of the chain stiffness, we evaluate the static friction threshold and consider the depinning transition mechanisms as a function of the applied driving force. As experimentally observed in QCM frictional measurements of adsorbed layers, we find that disorder operates differently depending on the starting geometrical configuration. For commensurate interfaces, randomness lowers considerably the chain depinning threshold. On the contrary, for incommensurate mating contacts, disorder favors static pinning destroying the possible frictionless (superlubric) sliding states. Interestingly, thermal and disorder effects strongly influence also the occurrence of parametric resonances inside the chain, capable of converting the kinetic energy of the center-of-mass motion into internal vibrational excitations. We comment on the nature of the different dynamical states and hysteresis (due to system bi-stability) observed at different increasing and decreasing strengths of the external force.  相似文献   

20.
We have studied the problem of controllable dissipative tunneling in the system of tunnel-binding quantum dots (quantum molecules) and in the “AFM/STM cantilever tip-quantum dot” system, which was simulated by a double-well oscillator potential interacting with a heat-bath in an external electric field. We show that theoretical results qualitatively describe some experimental I–V curves for “the AFM/STM cantilever tip-zirconium quantum dot” system. These experimental curves were obtained in the Research Institute of Physics and Technologies at the State University of Nizhniy Novgorod.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号