首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We discuss the problem of a spin 1/2 impurity immersed in a spin S magnetically ordered background. We show that the problem maps onto a generalization of the dissipative two level system with two independent heat baths, associated with the Goldstone modes of the magnet, that couple to different components of the impurity spin operator. Using analytical perturbative renormalization group methods and accurate numerical renormalization group we show that contrary to other dissipative models there is quantum frustration of decoherence and quasiscaling even in the strong coupling regime. We make predictions for the behavior of the impurity magnetic susceptibility. Our results may also have relevance to quantum computation.  相似文献   

3.
We study quantum state estimation problems where the reference system with respect to which the state is measured should itself be treated quantum mechanically. In this situation, the difference between the system and the reference tends to fade. We investigate how the overlap between two pure quantum states can be optimally estimated, in several scenarios, and we re-visit homodyne detection. uantum information  相似文献   

4.
We formulate an axiomatic scheme, designed to provide a framework for a general, rigorous theory of relativistic quantum fields on a class of manifolds, that includes Kruskal's extension of Schwarzschild space-time, as well as Minkowski space-time. The scheme is an adaptation of Wightman's to this class of manifolds. We infer from it that, given an arbitrary field (in general, interacting) on a manifold X, the restriction of the field to a certain open submanifold X(+), whose boundaries are event horizons, satisfies the Kubo-Martin-Schwinger (KMS) thermal equilibrium conditions. This amounts to a rigorous, model-independent proof of a generalised Hawking-Unruh effect. Further, in cases where the field enjoys a certain PCT symmetry, the conjugation governing the KMS condition is just the PCT operator. The key to these results is an analogue, that we prove, of the Bisognano-Wichmann theorem. [J. Math. Phys.17 (1976), Theorem 1]. We also construct an alternative scheme by replacing a regularity condition at an event horizon by the assumption that the field in X(+) is in a ground, rather than a thermal, state. We show that, in this case, the observables in X(+) are uncorrelated to those in its causal complement, X(?), and thus that the event horizons act as physical barriers. Finally, we argue that the choice between the two schemes must be dictated by the prevailing conditions governing the state of the field.  相似文献   

5.
We report strong coupling between an ensemble of nitrogen-vacancy center electron spins in diamond and a superconducting microwave coplanar waveguide resonator. The characteristic scaling of the collective coupling strength with the square root of the number of emitters is observed directly. Additionally, we measure hyperfine coupling to (13)C nuclear spins, which is a first step towards a nuclear ensemble quantum memory. Using the dispersive shift of the cavity resonance frequency, we measure the relaxation time of the NV center at millikelvin temperatures in a nondestructive way.  相似文献   

6.
7.
The quantum dynamics of the two-dimensional image-potential states in front of the Cu(100) surface is measured by scanning tunneling microscopy and spectroscopy. The dispersion relation and the momentum resolved phase-relaxation time of the first image-potential state are determined from the quantum interference patterns in the local density of states at step edges. It is demonstrated that the tip-induced Stark shift does not affect the motion of the electrons parallel to the surface.  相似文献   

8.
9.
One-dimensional arrays of Superconducting QUantum Interference Devices (SQUIDs) form magnetic metamaterials exhibiting extraordinary properties, including tunability, dynamic multistability, negative magnetic permeability, and broadband transparency. The SQUIDs in a metamaterial interact through non-local, magnetic dipole-dipole forces, that makes it possible for multiheaded chimera states and coexisting patterns, including solitary states, to appear. The spontaneous emergence of chimera states and the role of multistability is demonstrated numerically for a SQUID metamaterial driven by an alternating magnetic field. The spatial synchronization and temporal complexity are discussed and the parameter space for the global synchronization reveals the areas of coherence-incoherence transition. Given that both one- and two-dimensional SQUID metamaterials have been already fabricated and investigated in the lab, the presence of a chimera state could in principle be detected with presently available experimental set-ups.  相似文献   

10.
The different kinds of magnetic phases arising in insulating systems are described and discussed. Attention is focussed on semi-disordered phases which retain partially long range order as reentrant properties and local canted states, and disordered phases without long range order as spin glasses and spin cluster states. The properties of some systems are described, choosen among those where Mössbauer spectroscopy has been performed, mainly spinels, glasses, fluorides, Eu-based compounds. Some unsolved problems are shortly pointed out.  相似文献   

11.
A model for quantum gravity, in which the conformal part of the metric is quantized using the path integral formalism, is presented. Einstein's equations can be suitably modified to take into account the effects of quantum conformal fluctuations. A closed Friedman model can be described in terms of well-defined stationary states. The “ground state” sets a lower bound (at Planck length) to the scale factor preventing the collapse. A possible explanation for matter creation and quantum nature of matter is suggested.  相似文献   

12.
A common assumption in quantum field theory is that the energy-momentum 4-vector of any quantum state must be time-like. It will be proven that this is not the case for a Dirac-Maxwell field. In this case quantum states can be shown to exist whose energy-momentum is space-like.  相似文献   

13.
The possible phase transitions when two layers at filling factor νt=1 are gradually separated are studied in this article. In the bosonic case the system should undergo a pairing transition from a Fermi liquid to an incompressible state. In the Fermionic case, the state evolves from an incompressible (1,1,1) state to a Fermi liquid. It is speculated that there is an intermediate phase involving charge two quasiparticles. To cite this article: V. Pasquier, C. R. Physique 3 (2002) 709–715.  相似文献   

14.
Based on the standard angular momentum theory, we create an experiment on preparing maximally pathentangled (︱N,0+︱0,N)~2(NOON) states of triphotons. In order to explain the error between the theoretical and experimental data, we consider the background events during the experiment, and observe their effect on the uncertainty in _1. Afterwards, we calculate the quantum Fisher information(QFI) of the states to evaluate their potential applications in quantum metrology. Our results show that by adding the appropriate background terms, the theoretical data of the produced states matches well with the experimental data. In this case, the QFI of the states is lower than maximally entangled NOON states, but still higher than a classical state.  相似文献   

15.
We establish a connection between ground states of local quantum Hamiltonians and thermal states of classical spin systems. For any discrete classical statistical mechanical model in any spatial dimension, we find an associated quantum state such that the reduced density operator behaves as the thermal state of the classical system. We show that all these quantum states are unique ground states of a universal 5-body local quantum Hamiltonian acting on a (polynomially enlarged) qubit system on a 2D lattice. The only free parameters of the quantum Hamiltonian are coupling strengths of two-body interactions, which allow one to choose the type and dimension of the classical model as well as the interaction strength and temperature. This opens the possibility to study and simulate classical spin models in arbitrary dimension using a 2D quantum system.  相似文献   

16.
We identify some hidden symmetries of Chern-Simons theories, such as appear in the effective theory for quantized Hall states. This allows us to determine which filling fractions admit spin-singlet quantum Hall states. Our results shed some light on states already observed at , and transitions between them. We identify SU(2), or higher, symmetries of many additional states — including spin-polarized states. Our symmetries classify low-lying excited states and may be of use in the construction of trial wavefunctions, but are typically not present in the edge theory, where they are lifted by non-universal couplings.  相似文献   

17.
Although the no-cloning theorem forbids perfect replication of quantum information, it is sometimes possible to produce large numbers of replicas with vanishingly small error. This phenomenon, known as quantum superreplication, can occur for both quantum states and quantum gates. The aim of this paper is to review the central features of quantum superreplication and provide a unified view of existing results. The paper also includes new results. In particular, we show that when quantum superreplication can be achieved, it can be achieved through estimation up to an error of size O(M/N2), where N and M are the number of input and output copies, respectively. Quantum strategies still offer an advantage for superreplication in that they allow for exponentially faster reduction of the error. Using the relation with estimation, we provide i) an alternative proof of the optimality of Heisenberg scaling in quantum metrology, ii) a strategy for estimating arbitrary unitary gates with a mean square error scaling as log N/N2, and iii) a protocol that generates O(N2) nearly perfect copies of a generic pure state U|0>while using the corresponding gate U only N times. Finally, we point out that superreplication can be achieved using interactions among k systems, provided that k is large compared to M2/N2.  相似文献   

18.
19.
In the present work the contributions of the temperature-dependent (i) crystal lattice parameters (related to the magnetic anisotropy energy), (ii) Young's modulus, (iii) saturation magnetization and (iv) thermal fluctuations of the microstress to the temperature dependence of the magnetic field induced strain (MFIS) in Ni-Mn-Ga martensite are considered in the framework of a statistical model. Both individual and cooperative effects of these factors on the achievable MFIS value and on the characteristic values of the magnetic fields, which trigger and saturate MFIS, are estimated. It is shown that all the factors affect both the achievable MFIS value and characteristic fields under the real experimental conditions, and none of them can be neglected in the quantitative theoretical analysis of the experimental strain-field dependencies obtained for different temperature values. In addition, the influence of specimen shape on the characteristic fields is illustrated for different temperature values. For the available experimental dependencies (i)–(iii) and the reasonable set of model parameters the switching magnetic field proved to be equal to 160 kA/m when the temperature was by 15 K below the martensite start temperature and raised to 320 kA/m when the temperature was by 45 K below the martensite start temperature. Obtained results agree with the experimental data reported by O. Heczko and L. Straka, in J. Appl. Phys. 94, 7139 (2003).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号