首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supercooled and overheated metastable states near the phase transition between hadronic matter and the quark-gluon plasma are considered. The Blaizot-Ollitraut equation of state is generalized to include metastable states. A stability criterion is formulated and its connection with the Ginzburg parameter, familiar in the theory of phase transitions, is established. Fluctuations and bubble creation as well as an inflation scenario of the universe during its hadronic era are discussed.  相似文献   

2.
We have studied the optical transition energies of single-wall carbon nanotubes over broad diameter (0.7-2.3 nm) and energy (1.26-2.71 eV) ranges, using their radial breathing mode Raman spectra. We establish the diameter and chiral angle dependence of the poorly studied third and fourth optical transitions in semiconducting tubes. Comparative analysis between the higher lying transitions and the first and second transitions show two different diameter scalings. Quantum mechanical calculations explain the result showing strongly bound excitons in the first and second transitions and a delocalized electron wave function in the third transition.  相似文献   

3.
Molecular dynamics simulations demonstrate how a mechanically bistable single-walled carbon nanotube can act as a variable-shaped capacitor. If the voltage is tuned so that collapsed and inflated states are degenerate, the tube's susceptibility to diverse external stimuli--temperature, voltage, trapped atoms--diverges following a universal curve, yielding an exceptionally sensitive sensor or actuator. The boundary between collapsed and inflated states can shift hundreds of angstroms in response to a single gas atom inside the tube. Several potential nanoelectromechanical devices could be based on this electrically tuned crossover between near-degenerate collapsed and inflated configurations.  相似文献   

4.
A new nanocomposite is obtained by functionalizing carbon nanotubes (CNTs) with a water soluble metalloprophyrin using a simple chemical technique and characterized by optical absorption, IR, and Raman spectroscopy. Results from spectroscopic studies indicate the noncovalent nature of interaction between CNTs and porphyrin. The ultrafast nonlinear response is characterized by measuring the nonlinear absorption coefficient and refractive index by z-scan technique in the femtosecond pulse regime. The nanocomposite is found to exhibit two-photon absorption (TPA) with a reasonably large nonlinear optical coefficient, whereas pure CNTs is known to exhibit saturable absorption. Design of such water soluble nanocomposites offers scope for obtaining materials with enhanced ultrafast optical nonlinearity.  相似文献   

5.
Squashing brings circumferentially separated areas of a carbon nanotube into close proximity, drastically altering the low-energy electronic properties and (in some cases) reversing standard rules for metallic versus semiconducting behavior. Such a deformation mode, not requiring motion of tube ends, may be useful for devices. Uniaxial stress of a few kbar can reversibly collapse a small-radius tube, inducing a 0.1 eV gap with a very strong pressure dependence, while the collapsed state of a larger tube is stable. The low-energy electronic properties of chiral tubes are surprisingly insensitive to collapse.  相似文献   

6.
王磊  张忠强  张洪武 《物理学报》2008,57(11):7069-7077
在单壁碳纳米管电浸润现象原子模拟的基础上,对双壁碳纳米管的电浸润现象进行了计算机模拟.运用经典分子动力学方法结合一个宏观的电毛细管模型模拟了双壁碳纳米管在水银中的电浸润过程,对不同内管尺寸情况下的浸润现象作了研究和比较.计算结果表明双壁碳管和单壁碳管的电浸润过程存在很大的不同,双壁碳管的内管在电浸润过程中起到重要的作用:当改变双壁碳管中内管的尺寸时,浸润现象会产生很大的改变. 关键词: 双壁碳纳米管 电浸润 分子动力学  相似文献   

7.
The electronic structure of semiconducting double-wall carbon nanotubes (CNTs) is calculated using the linearized augmented cylindrical wave method. The consideration is performed in the framework of the local density functional theory and the muffin-tin (MT) approximation for the one-electron Hamiltonian. The electronic spectrum of a double-wall CNT is determined by the free motion of electrons in the interatomic space of the two cylindrical layers, scattering by the MT spheres, and tunneling through the classically impenetrable region. Calculated results for double-wall CNTs of the (n, 0)@(n′, 0) zigzag type indicate that the shift of the band-gap width depends on whether n and n′ are divided by 3 with a remainder of 1 or 2. It is found that, regardless of the type of the inner tube, the energy gap E g of the outer tube decreases by 0.15–0.22 eV if the tube belongs to the sequence n = 2 (mod 3). For the outer tubes of the sequence n = 1 (mod 3), the shifts of the band gap ΔE g are always negative ?0.15 ≤ ΔE g ≤ ?0.05 eV. In both cases, the shifts ΔE g weakly oscillate rather than decrease in going to tubes of a larger diameter d. For the inner tubes, the changes in the band gap ΔE g are more sensitive to the diameter. At 10 ≤ n ≤ 16, the shifts ΔE g are positive and the maximum value of ΔE g equals 0.39 and 0.32 for the sequences n = 2 (mod 3) and n = 1 (mod 3), respectively. In going to the inner tubes of a larger diameter, ΔE g rapidly drops and then oscillates in the range from ?0.05 to 0.06 eV. The calculated results indicate that the shifts of the optical band gaps in core and shell tubes upon the formation of double-wall CNTs are significant, which must hinder the identification of double-wall CNTs by optical methods. On the other hand, the obtained results open up possibilities for a more detailed classification of double-wall nanotubes.  相似文献   

8.
We simulate the twist of carbon nanotubes using atomic molecular dynamic simulations. The ultimate twist angle per unit length and the deformation energy are calculated for nanotubes of different geometries. It is found that the thick tube is harder to be twisted while the thin tube exhibits higher ultimate twisting ratio. For multi-walled nanotubes, the zigzag tube is found to be able to stand more deformation than the armchair one. We observed the surface transformation during twisting. Formation of structural defects is observed prior to fracture.  相似文献   

9.
We report a study of the rotational dynamics in double-walled nanotubes using molecular dynamics simulations and a simple analytical model that reproduces the observations very well. We show that the dynamic friction is linear in the angular velocity for a wide range of values. The molecular dynamics simulations show that for large enough systems the relaxation time takes a constant value depending only on the interlayer spacing and temperature. Moreover, the friction force increases linearly with contact area and the relaxation time decreases with the temperature with a power law of exponent -1.53+/-0.04.  相似文献   

10.
We demonstrate that nonlinear electrical transport through a two-terminal nanoscale sample is not symmetric in the magnetic field B. More specifically, we have measured the lowest order B-asymmetric terms in single-walled carbon nanotubes. Theoretically, these terms can be used to infer both the strength of electron-electron interactions and the handedness of the nanotube. Consistent with theory, we find that at high temperatures the B-linear term is small and has a constant sign independent of Fermi energy, while at low temperatures it develops mesoscopic fluctuations. We also find surprising magnetoresistance at zero bias in the metallic regime.  相似文献   

11.
Time-resolved carrier dynamics in single-wall carbon nanotubes is investigated by means of two-color pump-probe experiments. The recombination dynamics is monitored by probing the transient photobleaching observed on the interband transitions of the semiconducting tubes. This dynamics takes place on a 1 ps time scale which is 1 order of magnitude slower than in graphite. Transient photoinduced absorption is observed for nonresonant probing and is interpreted as a global redshift of the pi-plasmon resonance. We show that the opening of the band gap in semiconducting carbon nanotubes determines the nonlinear response dynamics over the whole visible and near-infrared spectrum.  相似文献   

12.
Resonant behavior and magnitudes of third-order nonlinear optical susceptibilities in double-walled carbon nanotubes (DWNTs) have been investigated by means of femtosecond pump-probe spectroscopy with different pump-photon energies. With the selective excitation of the E22 exciton transition of the inner tubes labeled by the chiral vector indices (7,5) and (7,6), the imaginary part of nonlinear susceptibility Imχ(3) has shown the resonant enhancement compared with the case of the nonresonant excitation of the specific tube. The nonlinear response signal at the E22 transition energy of the (8,7) tube has been also enhanced for the excitation of the G-band phonon sideband of its E22 transition. This result is consistent with the phonon-mediated nonlinear optical process observed for the E22 transitions in single-walled carbon nanotubes (SWNTs). It has been also found that the values of the figure of merit Im χ(3)/α (α: absorption coefficient) of the inner tubes in DWNTs are smaller than those of the corresponding SWNTs, which is interpreted in terms of decay time shortening due to the energy relaxation between the inner and outer tubes.  相似文献   

13.
We study exciton (EX) dynamics in single-walled carbon nanotubes (SWNTs) included in polymethylmethacrylate by two-color pump-probe experiments with unprecedented temporal resolution. In the semiconducting SWNTs, we resolve the intersubband energy relaxation from the EX2 to the EX1 transition and find time constants of about 40 fs. The observation of a photoinduced absorption band strictly correlated to the photobleaching of the EX1 transition supports the excitonic model for primary excitations in SWNTs. We also detect in the time domain coherent oscillations due to the radial breathing modes at approximately 250 cm(-1).  相似文献   

14.
We characterize through large-scale simulations the nonlinear elastic response of multiwalled carbon nanotubes (MWCNTs) in torsion and bending. We identify a unified law consisting of two distinct power law regimes in the energy-deformation relation. This law encapsulates the complex mechanics of rippling and is described in terms of elastic constants, a critical length scale, and an anharmonic energy-deformation exponent. The mechanical response of MWCNTs is found to be strongly size dependent, in that the critical strain beyond which they behave nonlinearly scales as the inverse of their diameter. These predictions are consistent with available experimental observations.  相似文献   

15.
We report on the dynamics of the dielectric function of single-wall carbon nanotubes in the 10-30 THz frequency range after ultrafast laser excitation. The absence of a distinct free-carrier response is attributed to the photogeneration of strongly bound excitons in the tubes with large energy gaps. We find a feature of enhanced transmission caused by the blocking of optical transitions in small-gap tubes. The rapid decay of a featureless background with pronounced dichroism is associated with the increased absorption of spatially localized charge carriers before thermalization is completed.  相似文献   

16.
Heat conduction in single-walled carbon nanotubes(SWCNTs) has been investigated by using various methods, while less work has been focused on multi-walled carbon nanotubes(MWCNTs). The thermal conductivities of the double-walled carbon nanotubes(DWCNTs) with two different temperature control methods are studied by using molecular dynamics(MD) simulations. One case is that the heat baths(HBs) are imposed only on the outer wall, while the other is that the HBs are imposed on both the two walls. The results show that the ratio of the thermal conductivity of DWCNTs in the first case to that in the second case is inversely proportional to the ratio of the cross-sectional area of the DWCNT to that of its outer wall. In order to interpret the results and explore the heat conduction mechanisms, the inter-wall thermal transport of DWCNTs is simulated. Analyses of the temperature profiles of a DWCNT and its two walls in the two cases and the interwall thermal resistance show that in the first case heat is almost transported only along the outer wall, while in the second case a DWCNT behaves like parallel heat transport channels in which heat is transported along each wall independently.This gives a good explanation of our results and presents the heat conduction mechanisms of MWCNTs.  相似文献   

17.
We describe and interpret computer simulations of the time evolution of a binary alloy on a cubic lattice, with nearest neighbor interactions favoring like pairs of atoms. Initially the atoms are arranged at random; the time evolution proceeds by random interchanges of nearest neighbor pairs, using probabilities compatible with the equilibrium Gibbs distribution at temperatureT. For temperatures 0.59Tc, 0.81 Tc, and 0.89T c, with density of A atoms equal to that in the B-rich phase at coexistence, the density C1 of clusters ofl A atoms approximately satisfies the following empirical formulas: C1 w(1 –)3 andC 1, (1 –)4Q1w1 (2 l 10). Herew is a parameter and we defineQ l = K e E(K) , where the sum goes over all translationally nonequivalentl-particle clusters andE(K) is the energy of formation of the clusterK. Forl > 10,Q 1 is not known exactly; so we use an extrapolation formulaQ l Aw s –l l exp(–bl ), wherew s is the value ofw at coexistence. The same formula (withw > w s) also fits the observed values of C, (for small values ofl) at densities greater than the coexistence density (forT=0.59Tc): When the supersaturation is small, the simulations show apparently metastable states, a theoretical estimate of whose lifetime is compatible with the observations. For higher supersaturation the system is observed to undergo a slow process of segregation into two coexisting phases (andw therefore changes slowly with time). These results may be interpreted as a more quantitative formulation (and confirmation) of ideas used in standard nucleation theory. No evidence for a spinodal transition is found.Supported by AFOSR Grant No. 73-2430D and by ERDA Contract No. EY-76-C-02-3077*000.  相似文献   

18.
On the basis of the atomistic simulations of electrowetting in single-walled carbon nanotubes, electrowetting of double-walled carbon nanotubes by mercury is studied using classical molecular dynamics simulations. Wetting of double-walled carbon nanotubes by mercury occurs above a threshold size of inner tube when the voltage is applied on the outer tube, but no wetting phenomenon appears when the voltage is applied on the inner tube. The filling rate increases greatly with enlarging the inner tube size. The space between the two walls of double-walled carbon nanotubes cannot be filled by mercury during electrowetting process.  相似文献   

19.
采用Tersoff势测试和研究了反向非平衡分子动力学中的Müller-Plathe法和Jund法在一维纳米管热传导中的应用.在相同的模拟步数中,Müller-Plathe法可以得到很好的结果,热导率在交换频率大于50时对参数的选择并不敏感.然而,Jund法并不能得到良好的线性温度梯度,其热导率在一定程度上依赖于选择的热流大小.在此基础上,运用Müller-Plathe法进一步研究了碳纳米管和碳化硅纳米管的长度、直径和温度对热导率的影响.结果表明,无论是碳纳米管还是碳化硅纳米管,其长度、直径和温度对热导率的影响是一致的.只要长度增加,纳米管的热导率相应增大,但增长速率不断降低.直径对热导率的影响很大程度上还取决于温度,在高温时,直径对热导率几乎没有影响.除此之外,纳米管的热导率随着温度的增加总体上也是不断降低的,但峰值现象的出现还受纳米管长度的影响.  相似文献   

20.
We demonstrate that when a single-walled carbon nanotube is under pressure it undergoes a series of shape transitions, first transforming from a circle to an oval and then from an oval to a peanut. Most remarkably, the ratio of the area of the tube cross sections at the second transition over that at the first transition appears as a constant, independent of the tube radius. Its accurate value is computed to be G=0.819 469, by formulating a variational geometry problem to represent single-walled carbon nanotubes with a family of closed plane curves of fixed length and minimum bending energy. The implications of such a geometric constant in designing nanotube electromechanical pressure sensors are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号