首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cloud of laser-cooled 85Rb atoms is coupled through a magnetic funnel into a miniature waveguide formed by four current-carrying wires embedded in a silica fiber. The atom cloud has a approximately 100 &mgr;m radius within the fiber and propagates over cm distances. We study the coupling, propagation, and transverse distribution of atoms in the fiber, and find good agreement with theory. This prototype demonstrates the feasibility of miniature guides as a tool in the new field of integrated atom optics, leading to single-mode propagation of de Broglie waves and the possible preparation of 1D atom clouds.  相似文献   

2.
We study atom scattering from two colliding Bose-Einstein condensates using a position sensitive, time resolved, single atom detector. In analogy to quantum optics, the process can also be thought of as spontaneous, degenerate four-wave mixing of de Broglie waves. We find a clear correlation between atoms with opposite momenta, demonstrating pair production in the scattering process. We also observe a Hanbury Brown-Twiss correlation for collinear momenta, which permits an independent measurement of the size of the pair production source and thus the size of the spatial mode. The back-to-back pairs occupy very nearly two oppositely directed spatial modes, a promising feature for future quantum optics experiments.  相似文献   

3.
It is assumed that the motion of a particle in spacetime does not depend on the motion relative to it of any observer or of any frame of reference. Thus if the particle has an internal vibration of the type hypothesized by de Broglie, the phase of that vibration at any point in spacetime must appear to be the same to all observers, i.e., the same in all frames of reference. Each observer or reference frame will have its own de Broglie wave for the particle. The phase of the particle's vibration must, by definition, be the same as that of all possible de Broglie waves at the point where the particle is. By superimposing all these possible de Broglie waves, a wave packet is formed centered in space on the particle. The formation of such a packet is discussed with the help of spacetime diagrams; the packet does not spread with time. The relevance of this packet to the wave mechanics of Schrödinger is discussed; it is also pointed out that any vibration can lead to such a packet.  相似文献   

4.
We have measured the index of refraction for sodium de Broglie waves in gases of Ar, Kr, Xe, and N2 over a wide range of sodium velocities. We observe glory oscillations--a velocity-dependent oscillation in the forward scattering amplitude. An atom interferometer was used to observe glory oscillations in the phase shift caused by the collision, which are larger than glory oscillations observed in the cross section. The glory oscillations depend sensitively on the shape of the interatomic potential, allowing us to discriminate among various predictions for these potentials, none of which completely agrees with our measurements.  相似文献   

5.
This paper presents the results of optical interferometry experiments in which the phase of photons in one arm of a Mach-Zehnder interferometer is modified by applying a transverse constriction. An equivalent quantum interferometry experiment using neutron de Broglie waves is discussed in which the observed phase shift is in the spirit of the force-free phase shift of the Aharonov-Bohm effects. In the optical experiments the experimental results are in excellent agreement with predictions.  相似文献   

6.
We report the direct observation of interference effects in a Young's double-slit experiment where the interfering waves are two spatially separated components of the de Broglie wave of single 1.3 MeV hydrogen atoms formed close to either target nucleus in H++H2 electron-transfer collisions. Quantum interference strongly influences the results even though the hydrogen atoms have a de Broglie wavelength, lambda_{dB}, as small as 25 fm.  相似文献   

7.
Recently, it has been observed that transmission of light through subwavelength apertures, which is usually negligible, can be significantly enhanced when surface plasmons are resonantly excited. Here we introduce the idea that similar effects can be expected for cold atoms in structures supporting surface matter waves. We show that surface matter waves are possible in properly designed structures, and then we theoretically demonstrate 100% transmission of rubidium atoms through an array of slits much narrower than the de Broglie wavelength of the atoms. Our results open up the possibility of using surface matter waves to control the flow of neutral atoms.  相似文献   

8.
Light atoms and molecules with energies from 300 eV to 25 keV are scattered under a grazing angle of incidence from a LiF(001) surface. For impact of neutral projectiles along low index directions for strings of atoms in the surface plane we observe a defined pattern of intensity spots in the angular distribution of reflected particles which is consistently described using concepts of diffraction theory and specific features of grazing scattering of atoms from insulator surfaces. Experimental results for scattering of H, D, 3He, and 4He atoms as well as H2 and D2 molecules can be unequivocally referred to atom diffraction with de Broglie wavelengths as low as about 0.001 Angstroms.  相似文献   

9.
In this paper an attempt is made to interpret inertial mass as a consequence of the invariant periodicity associated with physical de Broglie waves. In the case of a free particle, such waves, observed from an arbitrary reference frame, would exhibit the velocity-dependent wavelength given by de Broglie's relation; and it is conjectured that the inertial and additive properties of mass (or, more precisely, the conservation of momentum and energy) can be related to nonlinear interference effects occurring between the de Broglie waves for different particles. This picture could throw light on the physical meaning of quantization and suggests the possibility of reformulating classical and quantum mechanics in terms of a quasi-classical nonlinear field theory in which both inertial and quantization effects result essentially from the periodicity of de Broglie waves.  相似文献   

10.
An experimental apparatus to detect de Broglie waves is discussed. The wave packets of two photons generated in the parametric-down conversion are overlapped in a modified Mach-Zehnder interferometer. The coincidence photodetection rate of photon pairs is evaluated, as a function of path-length of two interferometer arms, both by using the de Broglie concept of a real quantum wave and by the quantum optical approach. The different results of these two theories are compared, and it is shown that the proposed experiment can disprove either the theories.  相似文献   

11.
A new technique for maintaining high contrast in an atom interferometer is used to measure large de Broglie wave phase shifts. Dependence of an interaction induced phase on the atoms' velocity is compensated by applying an engineered counterphase. The counterphase is equivalent to a rotation, is precisely determined by a frequency, and can be used to measure phase shifts due to interactions of unknown strength. Phase shifts of 150 rad (5 times larger than previously possible) have now been measured in an atom beam interferometer, and we suggest that this technique can enable comparisons of atomic polarizability with precision of one part in 10,000.  相似文献   

12.
Nowak S  Kurtsiefer C  Pfau T  David C 《Optics letters》1997,22(18):1430-1432
We observe the interference of de Broglie waves in the diffraction near field of a microfabricated grating. The reduction of the grating period by self-imaging of second to seventh order is spatially resolved. We investigate the dependence of this effect on the de Broglie wavelength by a time-to-flight technique.  相似文献   

13.
We describe a force-free phase shift due only to temporal geometric boundary conditions placed on a neutron de Broglie wave packet.  相似文献   

14.
Interferometry with Ca atoms   总被引:1,自引:0,他引:1  
Separated field excitation of a calcium atomic beam using four traveling laser fields represents two distinct atom interferometers utilizing the internal degrees of freedom of the atoms. Phase shifts between the atomic partial waves have been realized by phase shifts of the laser wave fields, by the ac-Stark shift, and by rotation of the interferometer (Sagnac effect). One particular interferometer can be selected by interaction of the atomic waves with extra laser fields. We furthermore report on the preparation of a laser cooled and deflected calcium atomic beam that can be utilized to largely increase the sensitivity of the interferometer.  相似文献   

15.
High harmonic spectra were recorded from different rare-gas atoms under identical experimental conditions. It is shown that although each atom's spectrum is different, the differences are due almost entirely to the orbital influence in the recombination step. The amplitude of the continuum electron wave packet versus kinetic energy is derived from these data and is shown to be largely independent of the atom, in agreement with models of tunnel ionization. We compare the measurements with calculations in both the length gauge and the velocity gauge and show that the two gauges imply a different de Broglie wavelength.  相似文献   

16.
17.
Abstract

Five deuterated derivatives of benzimidazole have been prepared and their sharp 280 nm vapour phase electronic absorption spectra recorded. When hydrogen atoms bonded to carbon are substituted, the origin band shifts to higher energies by 29 cm?1 per D atom, a value close to that found in benzene and some monosubstituted benzenes. When the hydrogen bonded to nitrogen is substituted, a much smaller shift is observed.  相似文献   

18.
A matter-wave interferometer based on the dc-Stark effect   总被引:1,自引:0,他引:1  
We present a new separated beam atom interferometer in which the recombination of the atomic wave packet is due to the dc-Stark interaction of an induced atomic dipole with a cylindrically symmetric electric field of a charged wire. The fringe period shows a weak power-law dependence on the de Broglie wavelength and the polarizability of the particles. We present a semiclassical theoretical model for this interferometer which resembles the measured performance of the interferometer without free parameters. A discussion of possible applications of this interferometer for atoms and molecules is given. Received: 20 November 1998 / Published online: 8 September 1999  相似文献   

19.
An experimental apparatus based on neutron interferometry is is presented which can in principle decide the question whether the empty waves of de Broglie really exist or not.  相似文献   

20.
The diffraction of laser-cooled atoms from a spatially-periodic potential is modelled using rigorous coupled-wave analysis. This numerical technique, normally applied to light-diffraction, is adapted for use with atomic de Broglie waves incident on a reflecting diffraction grating. The technique approximates the potential by a large number of constant layers and successively solves the complex eigenvalue problem in each layer, propagating the solution up to the surface of the grating. The method enables the diffraction efficiencies to be calculated for any periodic potential. The results from the numerical model are compared with the thin phase-grating approximation formulae for evanescent light-wave diffraction gratings and idealised magnetic diffraction gratings. The model is applied to the problem of diffracting Rb atoms from a grating made from an array of permanent magnets. Received 13 June 2000 and Received in final form 15 December 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号