首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluate the spin polarization (Edelstein or inverse spin galvanic effect) and the spin Hall current induced by an applied electric field by including the weak localization corrections for a two-dimensional electron gas. We show that the weak localization effects yield logarithmic corrections to both the spin polarization conductivity relating the spin polarization and the electric field and to the spin Hall angle relating the spin and charge currents. The renormalization of both the spin polarization conductivity and the spin Hall angle combine to produce a zero correction to the total spin Hall conductivity as required by an exact identity. Suggestions for the experimental observation of the effect are given.  相似文献   

2.
We evaluate the spin polarization (Edelstein or inverse spin galvanic effect) and the spin Hall current induced by an applied electric field by including the weak localization corrections for a two-dimensional electron gas. We show that the weak localization effects yield logarithmic corrections to both the spin polarization conductivity relating the spin polarization and the electric field and to the spin Hall angle relating the spin and charge currents. The renormalization of both the spin polarization conductivity and the spin Hall angle combine to produce a zero correction to the total spin Hall conductivity as required by an exact identity. Suggestions for the experimental observation of the effect are given.  相似文献   

3.
We investigate spin squeezing for superpositions of Dicke states. We derive the mean spin direction, the length of mean spin, the optimally squeezed angle and numerically calculate the spin squeezing parameter, which is determined by on the superposed coefficients and the relative phase. Approximate same superposed amplitude and the smaller relative phase lead to the larger the length of mean spin, the stronger spin squeezing and spin squeezing maintains in a longer time interval.  相似文献   

4.
崔晓波  陈芝得 《中国物理》2004,13(7):1124-1128
We present the calculation and comparison of tunnel splitting at excited levels of biaxial spin models by various methods, including the generalized instanton method, the generalized path integral method for coherent spin states, the perturbation method, and the exact method by numerical diagonalization of the Hamiltonian. It is found that, for integer spin with spin number around 10, tunnel splitting predicted by the generalized path integral for coherent spin states is about 10^{-n} times of the exact numerical result for the nth excited level, while the ratio of the results of the perturbation method and the exact numerical method diverges in the large spin limit. We thus conclude that the generalized instanton method is the best approximate way for calculating tunnel splitting in spin models.  相似文献   

5.
We investigate spin transport in voltage-biased spin-active Josephson junctions. The interplay of spin filtering, spin mixing, and multiple Andreev reflection leads to nonlinear voltage dependence of the dc and ac spin current. We compute the voltage characteristics of the spin current (IS) for superconductor-ferromagnet-superconductor Josephson junctions. The subharmonic gap structure of IS(V) is shown to be sensitive to the degree of spin mixing generated by the ferromagnetic interface, and exhibits a pronounced even-odd effect associated with spin transport during multiple Andreev reflection processes. For strong spin mixing both the magnitude and the direction of the dc spin current can be sensitively controlled by the bias voltage.  相似文献   

6.
We investigate the spin squeezing of a general 3-qubit state, which is superposed by a GHZ state and two W states. Numerical solutions for the length of mean spin, mean spin direction and spin squeezing were given. It is shown that the mean spin direction, the length of mean spin and the spin squeezing parameter are determined by the superposition coefficients and the relative phases between the GHZ state and the two W states.  相似文献   

7.
We investigate spin squeezing effects of trapped ions in an off-resonance optical potential system using the arbitrary range spin-spin interaction and transverse Geld model.The collective spin noises at any time are analyzed exactly.The general expression of spin squeezing factor is presented for arbitrary-range spin interaction.For the nearest-neighbor and next-nearest neighbor spin interaction model,the analytic solutions are reduced from the general expressions.It is shown that the maximum spin squeezing is enhanced for the general arbitraryrange spin interaction compared with the nearest-neighbor interaction model as the long-range interaction with arbitrary sites enforces stronger correlation.  相似文献   

8.
A quantum dot spin light emitting diode provides a test of carrier spin injection into a qubit and a means for analyzing carrier spin injection and local spin polarization. Even with 100% spin-polarized carriers the emitted light may be only partially circularly polarized due to the geometry of the dot. We have calculated carrier polarization-dependent optical matrix elements for InAs/GaAs self-assembled quantum dots (SAQDs) for electron and hole spin injection into a range of quantum dot sizes and shapes, and for arbitrary emission directions. Calculations for typical SAQD geometries with emission along [110] show light that is only 5% circularly polarized for spin states that are 100% polarized along [110]. Measuring along the growth direction gives near unity conversion of spin to photon polarization and is the least sensitive to uncertainties in SAQD geometry.  相似文献   

9.
We have studied the evolution of the spin Hall effect (SHE) in the regime where the material size responsible for the spin accumulation is either smaller or larger than the spin diffusion length. Lateral spin valve structures with Pt insertions were successfully used to measure the spin absorption efficiency as well as the spin accumulation in Pt induced through the spin Hall effect. Under a constant applied current the results show a decrease of the spin accumulation signal is more pronounced as the Pt thickness exceeds the spin diffusion length. This implies that the spin accumulation originates from bulk scattering inside the Pt wire and the spin diffusion length limits the SHE. We have also analyzed the temperature variation of the spin Hall conductivity to identify the dominant scattering mechanism.  相似文献   

10.
研究了电子的自旋相关的隧穿和极化。在外加磁场的作用下,自旋向上的电子与自旋向下的电子具有不同的隧穿系数。当电子的自旋方向与磁场方向相反时,其隧穿概率受到磁场的抑制而变小;反之,当两平行时,电子的了隧穿系数增大。这种差异可以用本中定义的自旋极化率来表示。本对不同磁场下的自旋极化率进行了计算,结果也表明当电子的动能较小,这种自旋极化的效应越显。  相似文献   

11.
Spin oscillations and their phase synchronization are discovered in a spin 1D waveguide (nanowire) after the local injection of a spin-polarized current in the vertical (perpendicular) geometry of magnetization. The mode composition of nonlinear spin self-oscillations is analyzed for a single nano-oscillator using the effect of spin transfer torque with regard to spin wave runaway over the 1D waveguide and synchronized spin self-oscillations at current pumping by two nano-oscillators. It is shown specifically that, along with simple (“nontopological”) oscillation modes, in which singular points in the oscillation amplitude spatial distribution are absent, the 1D waveguide may support modes with pole-type singular points inside the current pumping domain, which are characteristic of the geometry of a precessing 2π-domain boundary. A diagram for frequency- and current-detuning-synchronized spin self-oscillations that are excited by two spin nano-oscillators in the 1D spin waveguide is constructed.  相似文献   

12.
Boundary conditions are derived that determine the penetration of spin current through an interface of two noncollinear ferromagnets with an arbitrary angle between their magnetization vectors. We start from the well-known transformation properties of an electron spin wave functions under the rotation of a quantization axis. It allows directly find the connection between partial electric current densities for different spin subbands of the ferromagnets. No spin scattering is assumed in the near interface region, so that spin conservation takes place when electron intersects the boundary. The continuity conditions are found for partial chemical potential differences in the situation. Spatial distribution of nonequilibrium electron magnetizations is calculated under the spin current flowing through a contact of two semi-infinite ferromagnets. The distribution describes the spin accumulation effect by current and corresponding shift of the potential drop at the interface. These effects appear strongly dependent on the relation between spin contact resistances at the interface.  相似文献   

13.
We are able to continuously change the direction of polarization of spin accumulation in a nonmagnetic metal by varying the currents injected by two ferromagnetic spin injectors. From measurements made at a distance from the injection area, we find a cosvarphi variation of the spin signal. This confirms that the angle of polarization of the nonlocal spin polarization with respect to the magnetization of the fixed spin detector is continuously varied as we change the injection currents. We give an explanation for the origin of this simple cosvarphi variation of the spin signal.  相似文献   

14.
An analysis of spin dynamics is presented for semiconductor systems without inversion symmetry that exhibit spin splitting. It is shown that electron-electron interaction reduces the rate of the Dyakonov-Perel (precession) mechanism of spin relaxation both via spin mixing in the momentum space and via the Hartree-Fock exchange interaction in spin-polarized electron gas. The change in the Hartree-Fock contribution with increasing nonequilibrium spin polarization is analyzed. Theoretical predictions are compared with experimental results on spin dynamics in GaAs/AlGaAs-based quantum-well structures. The effect of electron-electron collisions is examined not only for two-dimensional electron gas in a quantum well, but also for electron gas in a bulk semiconductor and a quantum wire.  相似文献   

15.
The exchange switching of spin valves by an inverse current can be explained by the interaction of the charge carriers with the spin-injection effective magnetic field. Such an interaction gives rise to transverse spin components, which are transferred to the magnetic lattice and cause its instability and switching. The spin-injection field is produced by longitudinal spin components, but it opens up a channel for the transverse spin transfer to the lattice. The spin transfer to the lattice and the switching occur in the free layer of the spin valve.  相似文献   

16.
The spin configuration of the ground state of a two-dimensional electron system is investigated for different FQHE states from an analysis of circular polarization of time-resolved luminescence. The method clearly distinguishes between fully spin polarized, partially spin polarized and spin unpolarized FQHE ground states. We demonstrate that FQHE states which are spin unpolarized or partially polarized at low magnetic fields become fully spin polarized at high fields. Temperature dependence of the spin polarization reveals a nonmonotonic behavior at . At and the electron system is found to be fully spin polarized. This result does not indicate the existence of any skyrmionic excitations in high magnetic field limit. However, at the observed spin depolarization of electron system at and becomes broader for lower magnetic fields, so that full spin polarization remains only in a small vicinity of . Such a behavior could be considered as a precursor of skirmionic depolarization, which would dominate for smaller ratios between Zeeman and Coulomb energies.We demonstrate that the spin polarization of 2D-electron system at and can be strongly affected by hyperfine interaction between electrons and optically spin-oriented nuclears. This result is due to the fact that hyperfine interaction can both enhance and suppress effective Zeeman splitting in fixed external magnetic field.  相似文献   

17.
18.
Methods are presented for calculating the expectation value of the spin density for the state resulting from spin-projection of an anti-symmetrized spin-orbital product. It is found that the spin densities for projected and unprojected states differ in the coefficients of the various spatial terms, and that these coefficients can be determined from the properties of the spin algebra. It is shown how the coefficients needed for the spin density are related to those previously derived by other workers for spin-free operators. Illustrative cases of the formalism are examined in detail to show how the calculated z component of the spin density depends upon the total spin as well as upon its z component.  相似文献   

19.
We have used spin-polarized scanning tunneling spectroscopy to observe the spin polarization state of individual Fe and Cr atoms adsorbed onto Co nanoislands. These magnetic adatoms exhibit stationary out-of-plane spin polarization, but have opposite sign of the exchange coupling between electron states of the adatom and the Co island surface state: Fe adatoms exhibit parallel spin polarization to the Co surface state while Cr adatoms exhibit antiparallel spin polarization. First-principles calculations predict ferromagnetic and antiferromagnetic alignment of the spin moment for individual Fe and Cr adatoms on a Co film, respectively, implying negative spin polarization for Fe and Cr adatoms over the energy range of the Co surface state.  相似文献   

20.
Coherent transient excitation of the spin ground states in singly charged quantum dots creates optically coupled and decoupled states of the electron spin. We demonstrate selective excitation from the spin ground states to the trion state through phase sensitive control of the spin coherence via these three states, leading to partial rotations of the spin vector. This progress lays the ground work for achieving complete ultrafast spin rotations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号