首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 496 毫秒
1.
The origin of the lowest-temperature anomaly reported several years ago using a polycrystalline sample of the spin-ice compound Dy2Ti2O7 has remained unresolved. Here we finally clarify its origin by susceptibility measurements down to 65 mK using single crystals under accurate control of the magnetic fields in two independent directions. We demonstrate that the transition is induced under a subtle field combination that precisely cancels the nearest-neighbor spin interactions acting on the spins on the triangular lattice within the pyrochlore structure. Contrary to the other two field-induced transitions, this transition is driven only by the interactions beyond the nearest neighbors. Our observation thus provides the first qualitative evidence for the essential importance of the dipolar interaction beyond the nearest neighbors in the spin ice.  相似文献   

2.
A general theory of spin-lattice nuclear relaxation of spins I=1/2 caused by dipole-dipole couplings to quadrupole spins S1, characterized by a non-zero averaged (static) quadrupole coupling, is presented. In multispin systems containing quadrupolar and dipolar nuclei, transitions of spins 1/2 leading to their relaxation are associated through dipole-dipole couplings with certain transitions of quadrupole spins. The averaged quadrupole coupling attributes to the energy level structure of the quadrupole spin and influences in this manner relaxation processes of the spin 1/2. Typically, quadrupole spins exhibit also a complex multiexponential relaxation sensed by the dipolar spin as an additional modulation of the mutual dipole-dipole coupling. The proposed model includes both effects and is valid for an arbitrary magnetic field and an arbitrary quadrupole spin quantum number. The theory is applied to interpret fluorine relaxation profiles in LaF3 ionic crystals. The obtained results are compared with predictions of the 'classical' Solomon relaxation theory.  相似文献   

3.
A general theory of field dependent spin-lattice relaxation for nuclei of the spin quantum number 1/2 (1H, 19F, 13C) caused by dipole-dipole interactions with neighboring quadrupolar nuclei (nuclei possessing a quadrupolar moment) is presented. The theory is valid for arbitrary motional conditions and should be treated as a quadrupolar counterpart of the paramagnetic relaxation enhancement theory. When the energy level splitting of the dipolar spin (I=1/2) matches one of the transition frequencies of the quadrupolar nuclei one can observe a local enhancement of the dipolar spin relaxation (referred to as "quadrupolar peaks"). To see such effects the dynamics modulating the spin interactions has to be relatively slow. This brings the system beyond the validity range of perturbation approaches and requires the stochastic Liouville equation to be applied. The presented theory describes the quadrupolar relaxation enhancement (QRE) for an arbitrary spin quantum number of the quadrupolar nuclei and includes the asymmetry of the quadrupolar coupling. It has been applied to interpret the shape of magnetization curves (amplitude of 1H magnetization versus magnetic field) for the molecular crystal [C3N2H5]6[Bi4Br18] ([C3N2H5]-imidazolium). The magnetization curves show several dips (local minima) attributed to 1H-14N quadrupolar relaxation enhancement effects. In addition, as a limiting case a perturbation approach to QRE has been presented and its validity conditions have been discussed.  相似文献   

4.
Recent experiments suggest that the Ising pyrochlore magnets Ho2Ti2O7 and Dy2Ti2O7 display qualitative properties of the nearest-neighbor "spin ice" model. We discuss the dipolar energy scale present in both these materials and discuss how spin-ice behavior can occur despite the presence of long-range dipolar interactions. We present results of numerical simulations and a mean field analysis of Ising pyrochlore systems. Based on our quantitative theory, we suggest that the spin-ice behavior in these systems is due to long-range dipolar interactions, and that the nearest-neighbor exchange in Dy2Ti2O7 is antiferromagnetic.  相似文献   

5.
We examine the effects of long-range dipolar forces on metamagnetic transitions and generalize the theory of Condon domains to the case of an itinerant electron system undergoing a first-order metamagnetic transition. We demonstrate that, within a finite range of the applied field, dipolar interactions induce a spatial modulation of the magnetization in the form of stripes or bubbles. Our findings are consistent with recent observations in the bilayer ruthenate Sr(3)Ru(2)O(7).  相似文献   

6.
It has recently been suggested that long-range magnetic dipolar interactions are responsible for spin ice behavior in the Ising pyrochlore magnets Dy2Ti2O7 and Ho2Ti2O7. We report here numerical results on the low temperature properties of the dipolar spin ice model, obtained via a new loop algorithm which greatly improves the dynamics at low temperature. We recover the previously reported missing entropy in this model, and find a first order transition to a long-range ordered phase with zero total magnetization at very low temperature. We discuss the relevance of these results to Dy2Ti2O7 and Ho2Ti2O7.  相似文献   

7.
Y. Li  T.X. Wang 《Physics letters. A》2010,374(43):4475-4478
A Monte Carlo simulation on the magnetic ordering of the artificial geometrically frustrated square lattice shows that the system exhibits the spin ice state and the disorder state for strong and weak dipolar interactions. We demonstrate that the long-range dipolar interactions are significant for the short-range spin ice state.  相似文献   

8.
We have investigated the kagomé ice behavior of the dipolar spin-ice compound Dy2Ti2O7 in a magnetic field along a [111] direction using neutron scattering and Monte Carlo simulations. The spin correlations show that the kagomé ice behavior predicted for the nearest-neighbor interacting model, where the field induces dimensional reduction and spins are frustrated in each two-dimensional kagomé lattice, occurs in the dipole interacting system. The spins freeze at low temperatures within the macroscopically degenerate ground states of the nearest-neighbor model.  相似文献   

9.
We describe imaging experiments in which the pattern of the dipolar field generated by spatially modulated nuclear magnetization is directly visualized in simply structured phantoms. Two types of experiment have been carried out at 11.7 T using (1)H NMR signals. In the first, the field from a single spin species is imaged via its own NMR signal. In the second, the NMR signal from one spin species is used to image the field generated by a second species. The field patterns measured in these experiments correspond well with those calculated using simple theoretical expressions for the dipolar field. The results also directly demonstrate the spatial sensitivity of the signal generated using dipolar field effects, indicating that the range of the field depends upon the inverse of the spatial frequency with which the magnetization is modulated.  相似文献   

10.
Diffuse polarized neutron scattering studies have been carried out on single crystals of pyrochlore spin ice Ho2−xYxTi2O7 (x=0, 0.3, and 1) to investigate the effects of doping and anisotropy on spin correlations in the system. The crystals were aligned with the (1 −1 0) orientation coincident with the direction of neutron polarization. For all the samples studied the spin flip (SF) diffuse scattering (i.e. the in-plane component) reveals that the spin correlations can be described using a nearest-neighbour spin ice model (NNSM) at higher temperatures (T=3.6 K) and a dipolar spin ice model (DSM) as the temperature is reduced (T=30 mK). In the non-spin flip (NSF) channel (i.e. the out-of-plane component), the signature of strong antiferromagnetic correlations is observed for all the samples at the same temperature as the dipolar spin ice behaviour appears in the SF channel. Our studies show that the non-magnetic dopant Y does not significantly alter SF or NSF scattering for the spin ice state, even when Y doping is as high as 50%. In this paper, we focus on the experimental results of the highly doped spin ice HoYTi2O7 and compare our results with pure spin ice Ho2Ti2O7. The crossover from a dipolar to a nearest-neighbour spin ice behaviour and the doping insensitivity in spin ices are briefly discussed.  相似文献   

11.
We study the deterministic spin dynamic of two interacting magnetic moments with anisotropy and dipolar interaction under the presence of an applied magnetic field, by using the Landau–Lifshitz equation with and without a damping term. Due to different kinds of interactions, different time scales appear: a long time scale associated with the dipolar interaction and a short time scale associated with the Zeeman interaction. We found that the total magnetization is not conserved; furthermore, for the non-dissipative case it is a fluctuating function of time, with a strong dependence on the strength of the dipolar term. In the dissipative case there is a transient time before the total magnetization reaches its constant value. We examine this critical time as a function of the distance between the magnetic moments and the phenomenological damping coefficient, and found that it strongly depends on these control parameters.  相似文献   

12.
Dy2Ti2O7 is a geometrically frustrated magnetic material with a strongly correlated spin ice regime that extends from 1 K down to as low as 60 mK. The diffuse elastic neutron scattering intensities in the spin ice regime can be remarkably well described by a phenomenological model of weakly interacting hexagonal spin clusters, as invoked in other geometrically frustrated magnets. We present a highly refined microscopic theory of Dy2Ti2O7 that includes long-range dipolar and exchange interactions to third nearest neighbors and which demonstrates that the clusters are purely fictitious in this material. The seeming emergence of composite spin clusters and their associated scattering pattern is instead an indicator of fine-tuning of ancillary correlations within a strongly correlated state.  相似文献   

13.
We report (115)In nuclear magnetic resonance measurements of the heavy-fermion superconductor CeCoIn(5) in the vicinity of the superconducting critical field H(c2) for a magnetic field applied perpendicular to the ? axis. A possible inhomogeneous superconducting state, the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, is stabilized in this part of the phase diagram. In an 11 T applied magnetic field, we observe clear signatures of the two phase transitions: the higher temperature one to the homogeneous superconducting state and the lower temperature phase transition to a FFLO state. We find that the spin susceptibility in the putative FFLO state is significantly enhanced as compared to the value in a homogeneous superconducting state. The implications of this finding for the nature of the low temperature phase are discussed.  相似文献   

14.
Low temperature magnetization measurements on the pyrochlore spin ice compound Dy2Ti2O7 reveal that the ice-rule breaking spin flip, appearing at H approximately 0.9 T applied parallel to the [111] direction, turns into a novel first-order transition for T<0.36 K which is most probably of a liquid-gas type. T-linear variation of the critical field observed down to 0.03 K suggests the unusual situation that the entropy release across the transition remains finite [approximately 0.5 (J/K) x mol-Dy] as T-->0, in accordance with a breaking of the macroscopic degeneracy in the intermediate "kagomé ice" state.  相似文献   

15.
The LiHoxY1-xF4 magnetic material in a transverse magnetic field Bx x perpendicular to the Ising spin direction has long been used to study tunable quantum phase transitions in a random disordered system. We show that the Bx-induced magnetization along the x direction, combined with the local random dilution-induced destruction of crystalline symmetries, generates, via the predominant dipolar interactions between Ho3+ ions, random fields along the Ising z direction. This identifies LiHoxY1-xF4 in Bx as a new random field Ising system. The random fields explain the rapid decrease of the critical temperature in the diluted ferromagnetic regime and the smearing of the nonlinear susceptibility at the spin-glass transition with increasing Bx and render the Bx-induced quantum criticality in LiHoxY1-xF4 likely inaccessible.  相似文献   

16.
We study spin correlations for the highly frustrated classical pyrochlore lattice antiferromagnets with O(N) symmetry in the limit T-->0. We conjecture that a local constraint obeyed by the extensively degenerate ground states dictates a dipolar form for the asymptotic spin correlations, at all N not equal 2 for which the system is paramagnetic down to T=0. We verify this conjecture in the cases N=1 and N=3 by simulations and to all orders in the 1/N expansion about the solvable N=infinity limit. Remarkably, the N=infinity formulas are an excellent fit, at all distances, to the correlators at N=3 and even at N=1. Thus we obtain a simple analytical expression also for the correlations of the equivalent models of spin ice and cubic water ice, Ic.  相似文献   

17.
We report measurements of the ac susceptibility of the cooperative paramagnet Tb2Ti2O7 in a strong magnetic field. Our data show the expected saturation maximum in chi(T) and also an unexpected frequency dependence of this peak at low frequencies (<1 Hz), suggesting very slow spin relaxations are occurring. Measurements on samples diluted with nonmagnetic Y3+ or Lu3+ and complementary measurements on pure and diluted Dy2Ti2O7 strongly suggest that the relaxation is associated with dipolar spin correlations, representing unusual cooperative behavior in a paramagnetic system.  相似文献   

18.
Field-driven phase transitions generally arise from competition between Zeeman energy and exchange or crystal-field anisotropy. Here we present the phase diagram of a frustrated pyrochlore magnet Gd(2)Ti(2)O(7), where crystal-field splitting is small compared to the dipolar energy. We find good agreement between zero-temperature critical fields and those obtained from a mean-field model. Here, dipolar interactions couple real space and spin space, so the transitions in Gd(2)Ti(2)O(7) arise from field-induced "cooperative anisotropy," reflecting the broken spatial symmetries of the pyrochlore lattice.  相似文献   

19.
We present a detailed analysis of the role of the magnetic dipole-dipole interaction in cold and ultracold collisions. We focus on collisions between magnetically trapped NH molecules, but the theory is general for any two paramagnetic species for which the electronic spin and its space-fixed projection are (approximately) good quantum numbers. It is shown that dipolar spin relaxation is directly associated with magnetic-dipole induced avoided crossings that occur between different adiabatic potential curves. For a given collision energy and magnetic field strength, the cross-section contributions from different scattering channels depend strongly on whether or not the corresponding avoided crossings are energetically accessible. We find that the crossings become lower in energy as the magnetic field decreases, so that higher partial-wave scattering becomes increasingly important below a certain magnetic field strength. In addition, we derive analytical cross-section expressions for dipolar spin relaxation based on the Born approximation and distorted-wave Born approximation. The validity regions of these analytical expressions are determined by comparison with the NH + NH cross sections obtained from full coupled-channel calculations. We find that the Born approximation is accurate over a wide range of energies and field strengths, but breaks down at high energies and high magnetic fields. The analytical distorted-wave Born approximation gives more accurate results in the case of s-wave scattering, but shows some significant discrepancies for the higher partial-wave channels. We thus conclude that the Born approximation gives generally more meaningful results than the distorted-wave Born approximation at the collision energies and fields considered in this work.  相似文献   

20.
The theory of spin diffusion was extended to the case of nuclear dipolar order in solids containing paramagnetic impurities and nuclei with spin I > 1/2 having nuclear quadrupole moment. We show that spin diffusion process of dipolar order takes place in solids containing paramagnetic impurities. At the start of relaxation process, the direct relaxation regime is realized with non-exponential time dependence. Then the relaxation regime will be changed to diffusion-limited one. Using obtained expressions for the spin lattice relaxation times for these two relaxation regimes, the diffusion coefficient of the dipolar order in nuclear quadrupole resonance can be estimated from experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号