首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the transition to spatiotemporal chaos in a two-dimensional hydrodynamic experiment where liquid columns take place in the gravity induced instability of a liquid film. The film is formed below a plane grid which is used as a porous media and is continuously supplied with a controlled flow rate. This system can be either ordered (on a hexagonal structure) or disordered depending on the flow rate. We observe, for the first time in an initially structured state, a subcritical transition to spatiotemporal disorder which arises through spatiotemporal intermittency. Statistics of numbers, creations, and fusions of columns are investigated. We exhibit a critical behavior close to the directed percolation one.  相似文献   

2.
Tao Wang 《中国物理 B》2021,30(12):120508-120508
To date, there are very few studies on the transition beyond second Hopf bifurcation in a lid-driven square cavity, due to the difficulties in theoretical analysis and numerical simulations. In this paper, we study the characteristics of the third Hopf bifurcation in a driven square cavity by applying a consistent fourth-order compact finite difference scheme rectently developed by us. We numerically identify the critical Reynolds number of the third Hopf bifurcation located in the interval of (13944.7021,13946.5333) by the method of bisection. Through Fourier analysis, it is discovered that the flow becomes chaotic with a characteristic of period-doubling bifurcation when the Reynolds number is beyond the third bifurcation critical interval. Nonlinear time series analysis further ascertains the flow chaotic behaviors via the phase diagram, Kolmogorov entropy and maximal Lyapunov exponent. The phase diagram changes interestingly from a closed curve with self-intersection to an unclosed curve and the attractor eventually becomes strange when the flow becomes chaotic.  相似文献   

3.
A study of dynamic regimes in Bénard-Marangoni convection was carried out for various Prandtl and Marangoni numbers in small aspect ratio geometries (Γ = 2.2 and 2.8). Experiments in a small hexagonal vessel, for a large range of the Marangoni number (from 148 to 3636), were carried out. Fourier spectra and an auto-correlation function were used to recognize the various dynamic regimes. For given values of the Prandtl number (Pr = 440) and aspect ratio (Γ = 2.2), mono-periodic, bi-periodic and chaotic states were successively observed as the Marangoni number was increased. The correlation dimensions of strange attractors corresponding to the chaotic regimes were calculated. The dimensions were found to be larger than those obtained by other authors for Rayleigh-Bénard convection in aspect ratio geometries of the same order. The transition from temporal chaos to spatio-temporal chaos was also observed. For Γ = 2.2, when larger values of the Marangoni number were imposed (Ma = 1581 for Pr = 160 and Ma = 740 for Pr = 440), spatial modes were involved through the convective pattern dynamics.  相似文献   

4.
A close to identity symplectic mapping describing the dynamics of a charged particle in the field of an infinitely wide packet of electrostatic waves is studied. A region of chaotic dynamics, whose width is large for an arbitrarily small deviation of the mapping from the identity, exists on the phase cylinder. This is explained by the quasirandom change occurring in an adiabatic invariant of the problem when the phase trajectory crosses a resonance curve. An asymptotic formula is derived for the jump in the adiabatic invariant. The width of the chaos region and the density of the set of invariant curves near the boundary of the chaos region are estimated. (c) 1996 American Institute of Physics.  相似文献   

5.
The steady incompressible flow in a unit sphere introduced by Bajer and Moffatt [J. Fluid Mech. 212, 337 (1990)] is discussed. The velocity field of this flow differs by a small perturbation from an integrable field whose streamlines are almost all closed. The unperturbed flow has two stationary saddle points (poles of the sphere) and a two-dimensional separatrix passing through them. The entire interior of the unit sphere becomes the domain of streamline chaos for an arbitrarily small perturbation. This phenomenon is explained by the nonconservation of a certain adiabatic invariant that undergoes a jump when a streamline crosses a small neighborhood of the separatrix of the unperturbed flow. An asymptotic formula is obtained for the jump in the adiabatic invariant. The accumulation of such jumps in the course of repeated crossings of the separatrix results in the complete breaking of adiabatic invariance and streamline chaos. (c) 1996 American Institute of Physics.  相似文献   

6.
7.
The Melnikov-Holmes method is used to study the onset of chaos in a driven pendulum with nonlinear dissipation. Detailed numerical studies reveal many interesting features like a chaotic attractor at low frequencies, band formation near escape from the potential well and a sequence of subharmonic bifurcations inside the band that accumulates at the homoclinic bifurcation point.  相似文献   

8.
We study statistical properties of the irregular bursting arising in a class of neuronal models close to the transition from spiking to bursting. Prior to the transition to bursting, the systems in this class develop chaotic attractors, which generate irregular spiking. The chaotic spiking gives rise to irregular bursting. The duration of bursts near the transition can be very long. We describe the statistics of the number of spikes and the interspike interval distributions within one burst as functions of the distance from criticality.  相似文献   

9.
10.
We consider situations where, in a continuous-time dynamical system, a nonchaotic attractor coexists with a nonattracting chaotic saddle, as in a periodic window. Under the influence of noise, chaos can arise. We investigate the fundamental dynamical mechanism responsible for the transition and obtain a general scaling law for the largest Lyapunov exponent. A striking finding is that the topology of the flow is fundamentally disturbed after the onset of noisy chaos, and we point out that such a disturbance is due to changes in the number of unstable eigendirections along a continuous trajectory under the influence of noise.  相似文献   

11.
An approximate solution to the two-dimensional incompressible fluid equations is constructed by expanding the vorticity field in a series of derivatives of a Gaussian vortex. The expansion is used to analyze the motion of a corotating Gaussian vortex pair, and the spatial rotation frequency of the vortex pair is derived directly from the fluid vorticity equation. The resulting rotation frequency includes the effects of finite vortex core size and viscosity and reduces, in the appropriate limit, to the rotation frequency of the Kirchhoff point vortex theory. The expansion is then used in the low Mach number Lighthill equation to derive the far-field acoustic pressure generated by the Gaussian vortex pair. This pressure amplitude is compared with that of a previous fully numerical simulation in which the Reynolds number is large and the vortex core size is significant compared to the vortex separation. The present analytic result for the far-field acoustic pressure is shown to be substantially more accurate than previous theoretical predictions. The given example suggests that the vorticity expansion is a useful tool for the prediction of sound generated by a general distributed vorticity field.  相似文献   

12.
We analyze the properties of a 19-dimensional Galerkin approximation to a parallel shear flow. The laminar flow with a sinusoidal shape is stable for all Reynolds numbers Re. For sufficiently large Re additional stationary flows occur; they are all unstable. The lifetimes of finite amplitude perturbations shows a fractal dependence on amplitude and Reynolds number. These findings are in accord with observations on plane Couette flow and suggest a universality of this transition scenario in shear flows.  相似文献   

13.
Hypernetted chain (HNC) integral equation theory has been used to study the structural features of binary charged stabilized colloidal suspensions confined to a two-dimensional plane. The particles interact via purely repulsive Yukawa intermolecular potential, the inverse screening length scaled by the average distance between strongly interacting components of the mixture (dimensionless screening parameter) being 1, 3 and 5. Results of HNC theory for one-component systems are found to be in very good agreement with that of simulation, in the parameter range of our study. Binary Yukawa systems with dimensionless screening parameters 1 and 3 are found to exhibit diffuse clusters of the weakly interacting particles, marked by the emergence of a cluster peak in the corresponding partial structure factor curves. No cluster peak is found in the system with the screening parameter 5. For the entire range of mixture parameters, the strongly interacting particles remain homogeneously distributed.  相似文献   

14.
15.
Many biperiodic flows can be modelled by maps of a circle to itself. For such maps the transition from zero to positive topological entropy can be achieved in several ways. We describe all the possible routes for smooth circle maps, and discuss the relevance of our results to the transition to chaos for two-frequency systems.  相似文献   

16.
17.
The evolution of the isolated domains of a bifurcated structure in a subcritical state is experimentally studied along the hysteresis branch, up to the critical point at which a chaotic regime is found to develop. The width of the domains is unstable and the fronts dynamics exhibit a cascade of bifurcations as the constraint increases. The chaotic regime is initiated by a splitting of the isolated domains, controlled by a width-selection mechanism. Most of these results are qualitatively reproduced in a fifth-order Ginzburg-Landau model.  相似文献   

18.
19.
The global bifurcation structure for a model of coupled nonlinear oscillators has been analysed numerically. It is shown that destruction of the two-torus preceding chaos is usually observed in this system. The critical surface of the invariant two-torus and its collapse in the course of rotation are firstly observed in a realistic differential equation system. A scaling property for the fine structure of phase-locking regions has also been confirmed.  相似文献   

20.
A two-dimensional system of atoms in an anisotropic optical lattice is studied theoretically. If the system is finite in one direction, it is shown to exhibit a transition between a two-dimensional superfluid and a one-dimensional Mott insulating chain of superfluid tubes. Monte Carlo simulations are consistent with the expectation that the phase transition is of Kosterlitz-Thouless type. The effect of the transition on experimental time-of-flight images is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号