首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present measurements of the phase coherence time taupsi in quasi-one-dimensional Au/Fe Kondo wires and compare the temperature dependence taupsi of with a recent theory of inelastic scattering from magnetic impurities [Phys. Rev. Lett. 93, 107204 (2004)10.1103/PhysRevLett.93.107204]. A very good agreement is obtained for temperatures down to 0.2T(K). Below the Kondo temperature T(K), the inverse of the phase coherence time varies linearly with temperature over almost one decade in temperature.  相似文献   

2.
The temperature dependence of the spin-wave gap in the triangular antiferromagnet CsMnBr3 was studied above the three-dimensional ordering temperature T(N)=8.3 K along the main symmetry directions using inelastic neutron scattering. We find at T(N) two gapped dispersive modes, whose energy increases with temperature. Moreover, the width of the spin-wave band along the [110] direction increases also. In a second session, polarization analysis was applied in order to extract explicitly the components with in-plane and out-of-plane character. The results show that both gapped modes (with axial and radial symmetry) renormalize upwards with rising temperature. We show that this behavior is not compatible with spin-wave theory. In addition, we find a new magnetic anomaly in the paramagnetic phase.  相似文献   

3.
The intermediate valence compound YbAl3 exhibits a broad magnetic excitation in the inelastic neutron scattering spectrum with characteristic energy E1 approximately 50 meV, equal to the Kondo energy (T(K) approximately 600-700 K). In the low temperature (T < T(coh) approximately 40 K) Fermi liquid state, however, a new peak in the scattering occurs at E2 approximately 33 meV, which lies in the hybridization gap that exists in this compound. We report inelastic neutron scattering results for a single-crystal sample. The scattering at energies near E1 qualitatively has the momentum (Q) dependence expected for interband scattering across the indirect gap. The scattering near E2 has a very different Q dependence: it is a weak function of Q over a large fraction of the Brillouin zone and is smallest near (1/2,1/2, 1/2). A possibility is that the peak at E2 arises from a spatially localized excitation in the hybridization gap.  相似文献   

4.
Resonant magnetic x-ray scattering near the vanadium L2,3-absorption edges has been used to investigate the low temperature magnetic structure of high quality BaVS3 single crystals. Below T(N)=31 K, the strong resonance revealed a triple-incommensurate magnetic ordering at the wave vector (0.226 0.226 ξ) in hexagonal notation, with ξ=0.033. The azimuthal-angle dependence of the scattering signal and time-dependent density functional theory simulations indicate an antiferromagnetic order within the ab plane with the spins polarized along a in the monoclinic structure.  相似文献   

5.
Inelastic neutron scattering was used to study the temperature (T) dependence of the lattice excitations in La 0.7Ca 0.3MnO (3). An optical Jahn-Teller phonon exhibits continuous but anomalous damping with increasing temperature in the ferromagnetic-metallic phase and collapses above the Curie temperature T(C) (240 K). We attribute this anomaly to the growing dynamic phase segregation as T-->T(C), thus providing evidence of local fluctuations associated with the short-range polaron or charge/orbital ordering in the ferromagnetic-metallic state.  相似文献   

6.
We use the numerical renormalization group method to calculate the single-particle matrix elements T of the many-body T matrix of the conduction electrons scattered by a magnetic impurity at T=0 temperature. Since T determines both the total and the elastic, spin-diagonal scattering cross sections, we are able to compute the full energy, spin, and magnetic field dependence of the inelastic scattering cross section sigma(inel)(omega). We find an almost linear frequency dependence of sigma(inel)(omega) below the Kondo temperature T(K), which crosses over to a omega(2) behavior only at extremely low energies. Our method can be generalized to other quantum impurity models.  相似文献   

7.
Resonant inelastic x-ray scattering (RIXS) yields clear evidence of spectroscopic Kondo scales in heavy fermions. In YbInCu4 and YbAgCu4 RIXS probes the Yb2+ component of the hybrid ground state and the temperature dependence of the Yb 4f occupation. We report a sudden valence change at a phase transition in YbInCu4, but a continuous temperature dependence in YbAgCu4, consistent with the predictions of the Anderson impurity model, for a Kondo temperature T(K) = 70 K. These results solve a long-standing controversy and establish RIXS as a quantitative probe of the electronic structure of strongly correlated electron systems.  相似文献   

8.
Thermal conductivity of paramagnetic Tb3Ga5O12 (TbGG) terbium-gallium garnet single crystals is investigated at temperatures from 0.4 to 300 K in magnetic fields up to 3.25 T. A minimum is observed in the temperature dependence κ(T) of thermal conductivity at T min = 0.52 K. This and other singularities on the κ(T) dependence are associated with scattering of phonons from terbium ions. The thermal conductivity at T = 5.1 K strongly depends on the magnetic field direction relative to the crystallographic axes of the crystal. Experimental data are considered using the Debye theory of thermal conductivity taking into account resonance scattering of phonons from Tb3+ ions. Analysis of the temperature and field dependences of the thermal conductivity indicates the existence of a strong spin-phonon interaction in TbGG. The low-temperature behavior of the thermal conductivity (field and angular dependences) is mainly determined by resonance scattering of phonons at the first quasi-doublet of the electron spectrum of Tb3+ ion.  相似文献   

9.
A gradual spin-state transition occurs in LaCoO3 around T approximately 80-120 K, whose detailed nature remains controversial. We studied this transition by means of inelastic neutron scattering and found that with increasing temperature an excitation at approximately 0.6 meV appears, whose intensity increases with temperature, following the bulk magnetization. Within a model including crystal-field interaction and spin-orbit coupling, we interpret this excitation as originating from a transition between thermally excited states located about 120 K above the ground state. We further discuss the nature of the magnetic excited state in terms of intermediate-spin (t(2g)(5)e(g)(1), S=1) versus high-spin (t(2g)(4)e(g)(2), S=2) states. Since the g factor obtained from the field dependence of the inelastic neutron scattering is g approximately 3, the second interpretation is definitely favored.  相似文献   

10.
We measure the temperature and frequency dependence of the complex Hall angle for normal state YBa(2)Cu(3)O(7) films from dc to far-infrared frequencies (20-250 cm(-1)) using a new modulated polarization technique. We determine that the functional dependence of the Hall angle on scattering does not fit the expected Lorentzian response. We find spectral evidence supporting models of the Hall effect where the scattering Gamma(H) is linear in T, suggesting that a single relaxation rate, linear in temperature, governs transport in the cuprates.  相似文献   

11.
Polarization-resolved Raman scattering measurements were performed on MgB(2) single crystals to determine the magnitude, symmetry, and temperature dependence of the superconducting gap. A single sharp peak due to Cooper pair breaking appears in the electronic continuum below T(c), reaching a maximum Raman shift of 105 +/- 1 cm(-1) [2 Delta(0)/k(B)T(c) = 3.96 +/- 0.09] and showing up to 5 cm(-1) anisotropy between polarized and depolarized spectra. The temperature dependence of 2 Delta follows that predicted from BCS theory, while the anisotropy decreases with decreasing temperature. It is concluded that the Raman results are consistent with a slightly anisotropic s-wave gap in a conventional BCS superconductor.  相似文献   

12.
63Cu NQR measurements of the 63Cu T1 are reported for the quantum critical point system CeCu5.9Au0.1 over temperatures ranging from 0.1 up to 4.2 K. Below approximately 1 K the magnetization recovery exhibits a stable, nonexponential decay function which we believe signals the onset of 2D quantum critical fluctuations, as has been noted in the literature. We find T1(-1) is proportional to T0.75 for the region T < 1 K. The observed temperature dependence is in agreement with a phenomenological model of non-Fermi liquid behavior based on the uniform susceptibility but is inconsistent with calculations based on susceptibility peaks identified via neutron scattering experiments.  相似文献   

13.
We report measurements of the magnetic penetration depth in single crystals of Sr2RuO4 down to 0.04 K using a tunnel-diode based, self-inductive technique. We observe a power law temperature dependence below 0.8 K, with no sign of a second phase transition nor of a crossover predicted for a multiband superconductor. A power law dependence suggests that the gap function has nodes, inconsistent with candidate p-wave states. We argue that nonlocal effects, rather than impurity scattering, can explain the observed T2 dependence instead of the T-linear behavior expected for line nodes.  相似文献   

14.
We have investigated the electron spin resonance (ESR) on single crystals of BaCu2Ge2O7 at temperatures between 300 and 2 K and in a large frequency band, 9.6-134 GHz, in order to test the predictions of a recent theory, proposed by Oshikawa and Affleck (OA) [Phys. Rev. Lett. 82, 5136 (1999)]], which describes the ESR in a spin-1/2 Heisenberg chain with the Dzyaloshinskii-Moriya interaction. We find, in particular, that the ESR linewidth, Delta H, displays a rich temperature behavior. As the temperature decreases from T(max)/2 approximately 170 to 50 K, Delta H shows a rapid and linear decrease, Delta H approximately T. At low temperatures, below 50 K, Delta H acquires a strong dependence on the magnetic field orientation and for H axially c it shows a (h/T)(2) behavior which is due to an induced staggered field h, according to OA's prediction.  相似文献   

15.
We have unambiguously observed the c -axis Josephson plasma resonance (JPR) in high-critical-temperature (T(c)) cuprate (Tl(2)Ba(2)CaCu(2)O(8)) superconducting thin films, employing terahertz time-domain spectroscopy in transmission as a function of temperature in zero magnetic field. These are believed to be the first measurements of the JPR temperature dependence of a high-T(c) material in transmission. With increasing temperature, the JPR shifts from 705 GHz at 10 K to ~170 GHz at 98 K, corresponding to an increase in c-axis penetration depth from 22.4+/-0.6mum to 94+/-9mum . The linewidth of the JPR peak increases with temperature, which indicates an increase in the quasi-particle scattering rate. We have probed the onset of the c -axis phase coherence to ~0.95T(c) . The JPR vanishes above T(c) as expected.  相似文献   

16.
The effects of a strong magnetic field on superconducting Nb and MoGe nanowires with diameter approximately 10 nm have been studied. We have found that the Langer-Ambegaokar-McCumber-Halperin (LAMH) theory of thermally activated phase slips is applicable in a wide range of magnetic fields and describes well the temperature dependence of the wire resistance, over 11 orders of magnitude. The field dependence of the critical temperature, T(c), extracted from the LAMH fits is in good quantitative agreement with the theory of pair-breaking perturbations that takes into account both spin and orbital contributions. The extracted spin-orbit scattering time agrees with an estimate tau(s.o.) approximately tau(variant Planck's over 2pic/Ze(2))(4), where tau is the elastic scattering time and Z is the atomic number.  相似文献   

17.
The low temperature magnetoconductance of a large array of quantum coherent loops exhibits Altshuler-Aronov-Spivak oscillations with a periodicity corresponding to 1/2 flux quantum per loop. We show that the measurement of the harmonics content provides an accurate way to determine the electron phase-coherence length L(phi) in units of the lattice length with no adjustable parameters. We use this method to determine L(phi) in a square network realized from a 2D electron gas in a GaAs/GaAlAs heterojunction, with only a few conducting channels. The temperature dependence follows a power law T(-1/3) from 1.3 K to 25 mK with no saturation, as expected for 1D diffusive electronic motion and electron-electron scattering as the main decoherence mechanism.  相似文献   

18.
Non-Fermi liquid behavior is shown to occur in two-dimensional metals which are close to a charge ordering transition driven by the Coulomb repulsion. A linear temperature dependence of the scattering rate together with an increase of the electron effective mass occur above T*, a temperature scale much smaller than the Fermi temperature. It is shown that the anomalous temperature dependence of the optical conductivity of the quasi-two-dimensional organic metal alpha-(BEDT-TTF)2MHg(SCN)4, with M = NH4 and Rb, above T* = 50-100K, agrees qualitatively with predictions for the electronic properties of nearly charge ordered two-dimensional metals.  相似文献   

19.
We report a systematic study by (75)As nuclear-quadrupole resonance in LaFeAsO(1-x)F(x). The antiferromagnetic spin fluctuation found above the magnetic ordering temperature T(N) = 58 K for x = 0.03 persists in the regime 0.04 ≤ x ≤ 0.08, where superconductivity sets in. A dome-shaped x dependence of the superconducting transition temperature T(c) is found, with the highest T(c) = 27 K at x = 0.06, which is realized under significant antiferromagnetic spin fluctuation. With increasing x further, the antiferromagnetic spin fluctuation decreases, and so does T(c). These features resemble closely the cuprates La(2-x)Sr(x)CuO(4). In x = 0.06, the spin-lattice relaxation rate (1/T(1)) below T(c) decreases exponentially down to 0.13T(c), which unambiguously indicates that the energy gaps are fully opened. The temperature variation of 1/T(1) below T(c) is rendered nonexponential for other x by impurity scattering.  相似文献   

20.
The temperature dependences of thermal conductivity κ of polycrystalline CVD diamond are measured in the temperature range from 5 to 410 K. The diamond sample is annealed at temperatures sequentially increasing from 1550 to 1690°C to modify the properties of the intercrystallite contacts in it. As a result of annealing, the thermal conductivity decreases strongly at temperatures below 45 K, and its temperature dependence changes from approximately quadratic to cubic. At T > 45 K, the thermal conductivity remains almost unchanged upon annealing at temperatures up to 1650°C and decreases substantially at higher annealing temperatures. The experimental data are analyzed in terms of the Callaway theory of thermal conductivity [9], which takes into account the specific role of normal phonon-phonon scattering processes. The thermal conductivity is calculated with allowance for three-phonon scattering processes, the diffuse scattering by sample boundaries, the scattering by point and extended defects, the specular scattering by crystallite boundaries, and the scattering by intercrystallite contacts. A model that reproduces the main specific features of the thermal conductivity of CVD diamond is proposed. The phonon scattering by intercrystallite contacts plays a key role in this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号