首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Rogue waves in shallow water   总被引:1,自引:0,他引:1  
Most of the processes resulting in the formation of unexpectedly high surface waves in deep water (such as dispersive and geometrical focusing, interactions with currents and internal waves, reflection from caustic areas, etc.) are active also in shallow areas. Only the mechanism of modulational instability is not active in finite depth conditions. Instead, wave amplification along certain coastal profiles and the drastic dependence of the run-up height on the incident wave shape may substantially contribute to the formation of rogue waves in the nearshore. A unique source of long-living rogue waves (that has no analogues in the deep ocean) is the nonlinear interaction of obliquely propagating solitary shallow-water waves and an equivalent mechanism of Mach reflection of waves from the coast. The characteristic features of these processes are (i) extreme amplification of the steepness of the wave fronts, (ii) change in the orientation of the largest wave crests compared with that of the counterparts and (iii) rapid displacement of the location of the extreme wave humps along the crests of the interacting waves. The presence of coasts raises a number of related questions such as the possibility of conversion of rogue waves into sneaker waves with extremely high run-up. Also, the reaction of bottom sediments and the entire coastal zone to the rogue waves may be drastic.  相似文献   

2.
谢涛  沈涛  WilliamPerrie  陈伟  旷海兰 《中国物理 B》2010,19(5):54102-054102
To study the electromagnetic (EM) backscatter characteristics of freak waves at moderate incidence angles, we establish an EM backscattering model for freak waves in (1+1)-dimensional deep water. The nonlinear interaction between freak waves and Bragg short waves is considered to be the basic hydrodynamic spectra modulation mechanism in the model. Numerical results suggest that the EM backscattering intensities of freak waves are less than those from the background sea surface at moderate incidence angles. The normalised radar cross sections (NRCSs) from freak waves are highly polarisation dependent, even at low incidence angles, which is different from the situation for normal sea waves; moreover, the NRCS of freak waves is more polarisation dependent than the background sea surface. NRCS discrepancies between freak waves and the background sea surface with using horizontal transmitting horizomtal (HH) polarisation are larger than those with using vertical transmitting vertical (VV) polarisation, at moderate incident angles. NRCS discrepancies between freak waves and background sea surface decreases with the increase of incidence angle, in both HH and VV polarisation radars. As an application, in the synthetic-aperture radar (SAR) imaging of freak waves, we suggest that freak waves should have extremely low backscatter NRCSs for the freak wave facet with the strongest slope. Compared with the background sea surface, the freak waves should be darker in HH polarisation echo images than in VV echo images, in SAR images. Freak waves can be more easily detected from the background sea surface in HH polarisation images than in VV polarisation images. The possibility of detection of freak waves at low incidence angles is much higher than at high incidence angles.  相似文献   

3.
The phonon-polariton behaviors of two-dimensional piezoelectric phononic crystals (PPCs) were studied using the plane wave expansion method. The governing equations combine Maxwell's equations and Newton's equations of motion. A mode-repulsion can be formed by strong coupling between electromagnetic (EM) waves and elastic waves in the vicinity of the center of the first Brillouin zone for PPC that comprises piezoelectric material and with opposite polarization in different periodically organized areas. Take a 2D ZnO PPC as a numerical example, it was decoupled into two independent groups. One refers to the mixed mode of the in-plane elastic waves and the transverse-magnetic (TM) mode EM waves. The other group refers to the mixed mode of the out-of-plane elastic waves and the transverse-electric (TE) mode EM waves. Coupling repulsion is also observed in these two groups.  相似文献   

4.
In complex structures, curvature and impedance discontinuities (e.g., junctions) couple bending and longitudinal waves. Propagation losses for longitudinal waves are often much less than losses for bending waves, and damping treatments often less effective on longitudinal waves. When the dissipation in longitudinal waves is less than that on bending waves, longitudinal waves can provide an efficient means of power flow between bending waves generated at one location and bending waves that are a source of acoustic radiation at another location. In order to design and locate effective treatments, knowledge of the power flow in longitudinal as well as bending waves is required. The measurement of power in both bending and longitudinal waves when both waves are present is demonstrated. Measurements conducted on a straight beam and a T-beam are compared to predictions obtained using finite element methods. The effect of coupling between waves at the junction in a T-beam is illustrated using results from measurements of power flow.  相似文献   

5.
Recently, inwardly propagating waves (called antiwaves, AWs) in nonlinear oscillatory systems have attracted much attention. An interesting negative refraction phenomenon has been observed in a bidomain system where one medium supports forwardly propagating waves (normal waves, NWs) and the other AWs. In this paper we find that negative refraction (NR) in nonlinear media has an asymmetric property, i.e., NR can be observed only by applying wave source withproper frequency to one medium, but not the other. Moreover, NR appears always when the incident waves are dense and the refractional waves are sparse. This asymmetry is a particular feature for nonlinear NR, which can neither be observed in linear refraction processes (both positive and negative refractions) nor in nonlinear positive refraction. The mechanism underlying the asymmetry of nonlinear NR are fully understood based on the competition of nonlinear waves.  相似文献   

6.
This paper studies the elastic waves in non-Newtonian (Maxwell) fluid-saturated porous media with the nonzero boundary slip velocity for pore size distribution. The coefficient bFm(ω) that measures the deviation from Poiseuille flow friction in such media is presented. Based on this coefficient, we investigate the properties of elastic waves by calculating their phase velocities and attenuation coefficients as functions of frequency and the behaviour of the dynamic permeability. The study shows that the pore size distribution removes oscillations in all physical quantities in the non-Newtonian regime. Consideration of the nonzero boundary slip effect in non-Newtonian (Maxwell) fluid-saturated porous media results in (a) an overall increase of the dynamic permeability, (b) an increase of phase velocities of fast Biot waves and shear waves except in the low frequency domain and an overall increase of phase velocity of slow Biot waves and (c) an overall increase of the attenuation of three Biot waves in the intermediate frequency domain except in the deeply non-Newtonian regime. The study also shows that the attenuation coefficient of slow Biot waves is small in the deeply non-Newtonian regime at higher frequency, which encourages us to detect slow Biot waves in oil-saturated porous rock.  相似文献   

7.
The paper describes the standing structure (standing ionization waves) in a d.c. glow discharge in Ne at low currents, and its connection with moving ionization waves. We have found three types of standing waves and have associated them with the dispersion curves established from measurements on all three types of moving waves. Thus one wavelength of standing waves is associated with each dispersion curve related to one type of moving ionization waves.  相似文献   

8.
Five separate issues concerning Lamb wave propagation are discussed: (1) the actual motion of the particles in sheet material; (2) the mechanism of the initiation of Lamb waves in plates; (3) the effect of pulse propagation as opposed to continuous waves; (4) wave propagation on the inner and outer surfaces of tubes; and (5) the propagation of waves in tubes at large angles of incidence, beyond the Lamb wave regime.  相似文献   

9.
采用系统中的局部不均匀性消除振荡系统中的反螺旋波. 该不均匀性在系统中成为一个波源,不断产生稳定的相波. 研究结果发现,不均匀性的尺寸大小存在一个临界值,如果低于此临界值,则系统将无法激发任何相波. 根据不均匀性形状的不同,系统分别产生靶波和行波. 此外,实验还发现靶波与反螺旋波之间以及行波与反螺旋波之间存在着不同的动态竞争. 数值计算表明,对于行波,无论是低频行波还是高频行波,都可以成功地消除系统中的反螺旋波;而对于靶波,只有低频靶波才可以消除反螺旋波. 此控制方法简单易行,且同样适用于消除向外传播的螺旋波  相似文献   

10.
An investigation has been made of ion-acoustic solitary waves in an unmagnetized nonthermal plasma whose constituents are an inertial ion fluid and nonthermally distributed electrons. The properties of stationary solitary structures are briefly studied by the pseudo-potential approach, which is valid for arbitrary amplitude waves, and by the reductive perturbation method which is valid for small but finite amplitude limit. The time evolution of both compressive and rarefactive solitary waves, which are found to coexist in this nonthermal plasma model, is also examined by solving numerically the full set of fluid equations. The temporal behaviour of positive (compressive) solitary waves is found to be typical, i.e., the positive initial disturbance breaks up into a series of solitary waves with the largest in front. However, the behaviour of negative (rarefactive) solitary waves is quite different. These waves appear to be unstable and produce positive solitary waves at a later time. The relevancy of this investigation to observations in the magnetosphere of density depressions is briefly pointed out. Received 12 October 1999  相似文献   

11.
Lei Yu  Tong Li 《Physica A》2010,389(13):2607-3565
Density waves are investigated analytically and numerically in the optimal velocity model with reaction-time delay of drivers. The stability condition of this model is obtained by using the linear stability theory. The results show that the decrease of reaction-time delay of drivers leads to the stabilization of traffic flow. The Burgers, Korteweg-de Vries (KdV) and modified Korteweg-de Vries (mKdV) equations are derived to describe the density waves in the stable, metastable and unstable regions respectively. The triangular shock waves, soliton waves and kink-antikink waves appearing respectively in the three distinct regions are derived to describe the traffic jams. The numerical simulations are given.  相似文献   

12.
Propagation of electromagnetic waves in graphene-like conducting carbon crystals with the (C) and (C) symmetries is studied. It is demonstrated that only TM waves can exist in such crystals. The comparative analysis of such waves in different structures is performed. It is shown that the structures under study are superior to classical graphene with respect to excitation of electromagnetic waves.  相似文献   

13.
Acoustic waves arising in a fluid-filled elastic spherical shell placed in a liquid are considered. It is demonstrated that, in general, none of the four types of waves possible in such a system (subsonic and supersonic antisymmetric Lamb waves, symmetric Lamb waves, and whispering galleries) is realized separately, but an interaction between the waves of different types takes place.  相似文献   

14.
Abstract

This paper studies the elastic waves in non-Newtonian (Maxwell) fluid-saturated porous media with the nonzero boundary slip velocity for pore size distribution. The coefficient bF m (ω) that measures the deviation from Poiseuille flow friction in such media is presented. Based on this coefficient, we investigate the properties of elastic waves by calculating their phase velocities and attenuation coefficients as functions of frequency and the behaviour of the dynamic permeability. The study shows that the pore size distribution removes oscillations in all physical quantities in the non-Newtonian regime. Consideration of the nonzero boundary slip effect in non-Newtonian (Maxwell) fluid-saturated porous media results in (a) an overall increase of the dynamic permeability, (b) an increase of phase velocities of fast Biot waves and shear waves except in the low frequency domain and an overall increase of phase velocity of slow Biot waves and (c) an overall increase of the attenuation of three Biot waves in the intermediate frequency domain except in the deeply non-Newtonian regime. The study also shows that the attenuation coefficient of slow Biot waves is small in the deeply non-Newtonian regime at higher frequency, which encourages us to detect slow Biot waves in oil-saturated porous rock.  相似文献   

15.
Breathers and rogue waves as exact solutions of the three-dimensional Kadomtsev-Petviashvili equation are obtained via the bilinear transformation method.The breathers in three dimensions possess different dynamics in different planes,such as growing and decaying periodic line waves in the(x,y),(x,z) and(y,t) planes.Rogue waves are localized in time,and are obtained theoretically as a long wave limit of breathers with indeGnitely larger periods.It is shown that the rogue waves possess growing and decaying line profiles in the(x,y) or(x,z)plane,which arise from a constant background and then retreat back to the same background again.  相似文献   

16.
The classical theory of scattering of longitudinal waves (sound) by small inhomogeneities (scatterers) in an ideal fluid is generalized to a distribution of scatterers and such as to include the effect of the inhomogeneities on the elastic properties of the fluid. The results are obtained by a new method of solving the wave equation with spatial restrictions (caused by the presence of the scatterers), which can also be applied to other types of inhomogeneities (like surface roughness, for instance). A coherent forward scattering is identified for a uniform distribution of scatterers (practically equivalent with a mean-field approach), which is due to the fact that our treatment does not include multiple scattering. The reflected wave is obtained for a half-space (semi-infinite fluid) of uniformly distributed scatterers, as well as the field diffracted by a perfect lattice of scatterers. The same method is applied to a (inhomogeneous) rough surface of a semi-infinite ideal fluid. A perturbation-theoretical scheme is devised, with the roughness function as a perturbation parameter, for computing the waves scattered by the surface roughness. The waves scattered by the rough surface are both waves localized (and propagating only) on the surface (two-dimensional waves) and waves reflected back in the fluid. They exhibit directional effects, slowness, attenuation or resonance phenomena, depending on the spatial characteristics of the roughness function. The reflection coefficients and the energy carried on by these waves are calculated both for fixed and free surfaces. In some cases, the surface roughness may generate waves confined to the surface (damped, rough-surface waves).  相似文献   

17.
The propagation characteristics of magnetization waves, as well as the instabilities of sound waves in a self-gravitating dark interstellar molecular cloud containing ferromagnetic dust grains and baryonic gas clouds, have been theoretically investigated by including the dynamics of both ferromagnetic dust grains and baryonic gases. It has been shown that there exist two types of subsonic or supersonic (depending on the field strength of the magnetization) transverse magnetization waves, which can be regarded as counterparts of Alfvén waves (for the parallel propagation) and magnetosonic waves (for the perpendicular propagation) in a magnetoactive plasma. It has also been found that, in addition to the usual Jeans instability, the sound waves suffer a new type of instability, which is due to the combined effects of the baryonic gas dynamics and self-gravitational field in both weakly and highly collisional regimes.  相似文献   

18.
The properties of helical waves arising near a cylindrical cavity in an elastic medium are described. These waves are a manifestation of aperiodic (in angle) solutions to the dynamic elasticity equations. The dispersion characteristics of the waves are determined, and the spatial structure of the waves is described.  相似文献   

19.
In this article, we consider the(3+1)-dimensional generalized Kadomtsev–Petviashvili(GKP)equation in fluids. We show that a variety of nonlinear localized waves can be produced by the breath wave of the GKP model, such as the(oscillating-) W-and M-shaped waves, rational W-shaped waves, multi-peak solitary waves,(quasi-) Bell-shaped and W-shaped waves and(quasi-) periodic waves. Based on the characteristic line analysis and nonlinear superposition principle, we give the transition conditions analytically. We find the interesting dynamic behavior of the converted nonlinear waves, which is known as the time-varying feature. We further offer explanations for such phenomenon. We then discuss the classification of the converted solutions. We finally investigate the interactions of the converted waves including the semi-elastic collision, perfectly elastic collision, inelastic collision and one-off collision. And the mechanisms of the collisions are analyzed in detail. The results could enrich the dynamic features of the high-dimensional nonlinear waves in fluids.  相似文献   

20.
The electromagnetic fields that are generated as a spherical seismic wave (either P or S) traverses an interface separating two porous materials are numerically modeled both with and without the generation of Biot slow waves at the interface. In the case of an incident fast-P wave, the predicted electric-field amplitudes when slow waves are neglected can easily be off by as much as an order of magnitude. In the case of an incident S wave, the error is much smaller (typically on the order of 10% or less) because not much S-wave energy gets converted into slow waves. In neglecting the slow waves, only six plane waves (reflected and transmitted fast-P, S, and EM waves) are available with which to match the eight continuity conditions that hold at each interface. This overdetermined problem is solved by placing weights on the eight continuity conditions so that those conditions that are most important for obtaining the proper response are emphasized. It is demonstrated that when slow waves are neglected, it is best to also neglect the continuity of the Darcy flow and fluid pressure across an interface. The principal conclusion of this work is that to properly model the electromagnetic (EM) fields generated at an interface by an incident seismic wave, the full Biot theory that allows for generation of slow waves must be employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号