首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study are to investigate a thermal field in a turbulent boundary layer with suddenly changing wall thermal conditions by means of direct numerical simulation (DNS), and to evaluate predictions of a turbulence model in such a thermal field, in which DNS of spatially developing boundary layers with heat transfer can be conducted using the generation of turbulent inflow data as a method. In this study, two types of wall thermal condition are investigated using DNS and predicted by large eddy simulation (LES) and Reynolds-averaged Navier–Stokes equation simulation (RANS). In the first case, the velocity boundary layer only develops in the entrance of simulation, and the flat plate is heated from the halfway point, i.e., the adiabatic wall condition is adopted in the entrance, and the entrance region of thermal field in turbulence is simulated. Then, the thermal boundary layer develops along a constant temperature wall followed by adiabatic wall. In the second case, velocity and thermal boundary layers simultaneously develop, and the wall thermal condition is changed from a constant temperature to an adiabatic wall in the downstream region. DNS results clearly show the statistics and structure of turbulent heat transfer in a constant temperature wall followed by an adiabatic wall. In the first case, the entrance region of thermal field in turbulence can be also observed. Thus, both the development and the entrance regions in thermal fields can be explored, and the effects upstream of the thermal field on the adiabatic region are investigated. On the other hand, evaluations of predictions by LES and RANS are conducted using DNS results. The predictions of both LES and RANS almost agree with the DNS results in both cases, but the predicted temperature variances near the wall by RANS give different results as compared with DNS. This is because the dissipation rate of temperature variance is difficult to predict by the present RANS, which is found by the evaluation using DNS results.  相似文献   

2.
A passive control approach (no external energy input) for an unsteady separated flow case was investigated numerically. A surface-mounted control fence was positioned upstream of a backward-facing step, and as an oncoming flow a thin and fully developed turbulent boundary layer with a thickness of δ/h = 0.8 was used. The objective of the passive control was to enhance the entrainment rate of the shear layer bounding the separation zone behind the step, thereby reducing the mean reattachment length,〈 X r0 〉. Direct Numerical Simulations (DNS) and Large-Eddy Simulations (LES) at Re h = 3000 (based on the step height, h, and the free stream velocity, U ) were carried out for the uncontrolled and the controlled flow case. The LES results were in good agreement with the DNS reference solutions. Adaptively controlled feedback simulations showed that a certain minimum distance between the step edge and the upstream position of the control fence is required to achieve a maximum reduction of the reattachment length.  相似文献   

3.
In this study, the effect of heat transfer on the compressible turbulent shear layer and shockwave interaction in a scramjet has been investigated. To this end, highly resolved Large Eddy Simulations (LES) are performed to explore the effect of wall thermal conditions on the behavior of a reattaching free shear layer interacting with an oblique shock in compressible turbulent flows. Various wall-to-recovery temperature ratios are considered, and results are compared to the adiabatic wall. It is found that the wall temperature affects the reattachment location and the shock behavior in the interaction region. Furthermore, fluctuating heat flux exhibits a strong intermittent behavior with severe heat transfer compared to the mean, characterized by scattered spots. The distribution of the Stanton number shows a strong heat transfer and complex pattern within the interaction, with the maximum thermal (heat transfer rates) and dynamic loads (root-mean-square wall pressure) found for the case of the cold wall. The analysis of LES data reveals that the thermal boundary condition can significantly impact the wall pressure fluctuations level. The primary mechanism for changes in the flow unsteadiness due to the wall thermal condition is linked to the reattaching shear layer, which agrees with the compressible turbulent boundary layer theory.  相似文献   

4.
An efficient recycling algorithm is developed for injecting resolved turbulent content in a boundary layer as it switches from a Reynolds Averaged Navier-Stokes (RANS) type treatment to a Large Eddy Simulation (LES) type treatment inside a generalized Detached-Eddy Simulation (DES). The motivation is to use RANS in the thinnest boundary-layer area, following the original argument in favour of DES, and LES in the thicker boundary-layer areas especially approaching separation, to improve accuracy and possibly obtain unsteady outputs. The algorithm relies on an overlap of the RANS and LES domains and, therefore, the availability of both RANS and LES solutions in the recycling region, which is about 5 boundary-layer thicknesses long. This permits a smooth transfer of the turbulent stresses from this section to the LES inflow. The continuity of the skin-friction distribution is very good, reflecting the excellent viability of the resolved turbulence. The approach is validated in a flat-plate boundary layer and an airfoil near stall, with mild pressure gradient near the interface, and then applied to the compressible flow over an idealized airliner windshield wiper. The pressure fluctuations at reattachment are 12dB more intense than under a simple boundary layer at the same speed, and the output contains all the quantities needed to calculate the transmission of sound through the glass.  相似文献   

5.
In this study, we proposed an idea for an advanced switching parameter used in a hybrid approach connecting large eddy simulation (LES) with Reynolds-averaged Navier–Stokes modeling [the hybrid LES/RANS (HLR) model]. Although the HLR model is promising way to predict engineering turbulent flows, an important problem is that RANS is always adopted in the near-wall region, even if the grid resolution is fine enough for LES. To overcome this difficulty, the switching parameter proposed here introduced knowledge of the Kolmogorov microscale that is thought to be reasonable for representing the near-wall turbulence. This parameter enabled the present HLR model to be smoothly replaced by a full LES if a grid resolution was fine enough in the near-wall region. To confirm model performance, the present HLR model was applied to numerical simulations of a periodic hill flow as well as fundamental plane channel flows. The model generally provided reasonable predictions for these test cases that include complex turbulence with massive flow separation.  相似文献   

6.
The flow around a low-pressure turbine rotor blade with incoming periodic wakes is computed by means of DNS and LES. The latter adopts a dynamic sub-grid-scale model. The computed results are compared with time-averaged and instantaneous measured quantities. The simulation sreveal the presence of elongated flow structures, stemming from the incoming wake vorticity, which interact with the pressure side boundary layer. As the wake approaches the upstream half of the suction side, its vortical structures are stretched and align with the main flow, resulting in an impingement at virtually zero angle of attack. Periodically, in the absence of impinging wakes, the laminar suction side boundary layer separates in the adverse pressure gradient region. Flow in the laminar separation bubble is found to undergo transition via a Kelvin–Helmholtz instability. Subsequent impingement of the wake inhibits separation and thus promotes boundary layer reattachment. LES provides a fair reproduction of the DNS results both in terms of instantaneous, phase-averaged, and time-averaged flow fields with a considerable reduction in computational effort. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The two-layer modeling approach has become one of the most promising and successful methodology for simulating turbulent boundary layers in the past ten years. In the present study, a mixed wall model for large-eddy simulations (LES) of high-speed flows is proposed which combine two approaches; the thin-Boundary Layer Equations (TBLE) model of Kawai and Larsson (1994) and the analytical wall-layer model of Duprat et al. (2011) for streamwise pressure gradients. The new hybrid model has been efficiently implemented into a three-dimensional compressible LES solver and validated against DNS of a spatially-evolving supersonic boundary layer (BL) under moderate and strong pressure gradients, before being employed for the prediction of nozzle flow separations at different flow conditions, ranging from weakly to highly over-expanded regimes. A good agreement is obtained in terms of mean and fluctuating quantities compared to the DNS results. Particularly, the current wall-modeled LES results are found to perfectly match the DNS data of supersonic BL with/out pressure gradient. It is also shown that the model can account for the effect of the large-scale turbulent motions of the outer layer, indicating a good interaction between the inner and the outer part of the wall layer. In terms of simulations costs and improvements of computing power, the obtained results highlight the capability of the current wall-modeling LES strategy in saving a considerable amount of computational time compared to the wall-resolved LES counterpart, allowing to push further the simulations limits. Furthermore, the application of these computationally low-costly LES simulations to nozzle flow separation allows to clearly identify the origin of the shock unsteadiness, and the existence of broadband and energetically-significant low-frequency oscillations (LFO) in the vicinity of the separation region.  相似文献   

8.
Large eddy simulation (LES) is carried out to investigate the turbulent boundary-layer flows over a hill-shaped model with a steep or relatively moderate slope at moderately high Reynolds numbers (Re = O(103)) defined by the hill height and the velocity at the hill height. The study focuses on the effects of surface roughness and curvature. For Sub-grid Scale (SGS) modeling of LES, both the dynamic Smagorinsky model (DSM) and the dynamic mixed model (DMM) are applied. The behavior of the separated shear layer and the vortex motion are affected by the oncoming turbulence, such that the shear layer comes close to the ground surface, or the size of a separation region becomes small because of the earlier instability of the separated shear layer. Appropriate measures are required to generate the inflow turbulence. The methods of Lund et al. (J. Comput. Phys., 140:233–258, 1998) and Nozawa and Tamura (J. Wind Eng. Ind. Aerodyn., 90:1151–1162, 2002; The 4th European and African Conference on Wind Engineering, 1–6, 2005) are employed to simulate the smooth- and rough-wall turbulent boundary layers in order to generate time-sequential data of inflow turbulence. This paper discusses the unsteady phenomena of the wake flows over the smooth and rough 2D hill-shaped obstacles and aims to clarify the roughness effects on the flow patterns and the turbulence statistics distorted by the hill. Numerical validation is conducted by comparing the simulation results with wind tunnel experiment data for the same hill shape at almost the same Re. The applicability of DSM and DMM are discussed, focusing on the recirculation region behind a steep hill.  相似文献   

9.
Direct numerical simulations (DNS) of flow over and heat transfer from a flat plate affected by free-stream fluctuations were performed. A contoured upper wall was employed to generate a favourable streamwise pressure gradient along a large portion of the flat plate. The free-stream fluctuations originated from a separate LES of isotropic turbulence in a box. In the laminar portions of the accelerating boundary layer flow the formation of streaks was observed to induce an increase in heat transfer by the exchange of hot fluid near the surface of the plate and cold fluid from the free-stream. In the regions where the streamwise pressure gradient was only mildly favourable, intermittent turbulent spots were detected which relaminarised downstream as the streamwise pressure gradient became stronger. The relaminarisation of the turbulent spots was reflected by a slight decrease in the friction coefficient, which converged to its laminar value in the region where the streamwise pressure gradient was strongest.  相似文献   

10.
This paper presents direct numerical simulations (DNS) of stable and unstable turbulent thermal boundary layers. Since a buoyancy-affected boundary layer is often encountered in an urban environmental space where stable and unstable stratifications exist, exploring a buoyancy-affected boundary layer is very important to know the transport phenomena of the flow in an urban space. Although actual observation may qualitatively provide the characteristics of these flows, the relevant quantitative turbulent quantities are very difficult to measure. Thus, in order to quantitatively investigate a buoyancy-affected boundary layer in detail, we have here carried out for the first time time- and space-developing DNS of slightly stable and unstable turbulent thermal boundary layers. The DNS results show the quantitative turbulent statistics and structures of stable and unstable thermal boundary layers, in which the characteristic transport phenomena of thermally stratified boundary layers are demonstrated by indicating the budgets of turbulent shear stress and turbulent heat flux. Even though the input of buoyant force is not large, the influence of buoyancy is clearly revealed in both stable and unstable turbulent boundary layers. In particular, it is found that both stable and unstable thermal stratifications caused by the weak buoyant force remarkably alter the structure of near-wall turbulence.  相似文献   

11.
The near wall regions in internal combustion engines contain a significant amount of the gaseous mass in the cylinder and thus have a high relevance for the amount of unburned hydrocarbons, the wall heat transfer and the thermal stratification in the cylinder. In this context in the following study the predictive capability of Large Eddy Simulation (LES) with respect to wall heat flux and thermal stratification during the compression stroke i.e. under non-reactive conditions in an Internal Combustion Engine (ICE) are investigated based on a comparison with Direct Numerical Simulations (DNS). Two different modeling approaches for the near wall region, the low Reynolds damping approach and the LES adapted model from Plengsaard and Rutland, have been tested. During the first half of the compression stroke the low Reynolds damping approach agreed well with the DNS data, but increasing deviations were observed after 270° CA (piston halfway up). The underprediction of the wall heat flux at later stages was found to stem from the underestimation of the y + values of the first cell centroid, compared to values obtained by evaluating the DNS data at the same location, and originates from the model used to determine the friction velocity. As a consequence of the underpredicted y + value, the cell is not located in the viscous sublayer as expected, and the temperature gradient which is needed for the heat flux calculation is underpredicted. The results of the LES wall heat transfer model from Plengsaard and Rutland on the other hand showed overall reasonable agreement with the DNS data, but the model strongly depended on the modeling constants. With respect to the increasing thermal stratification during the compression both methods were found to significantly under predict the DNS results. These findings are especially relevant for LES of auto ignition phenomena in engines, since ignition timing and location are known to strongly depend on the temperature distribution.  相似文献   

12.
《Fluid Dynamics Research》2006,38(2-3):145-173
In this paper, direct numerical simulations (DNS) and large eddy simulations (LES) of three engineering flows carried out in the author's research group are presented. The first example, simulated both with DNS and LES, is the flow in a low-pressure turbine cascade with wakes passing periodically through the cascade channel. In this situation, the laminar–turbulent transition of the boundary layers on the blade surfaces, which is strongly influenced by the passing wakes, is of special interest. Next, LES of the flow past the Ahmed body is presented, which is a car model with slant back. In spite of the fairly simple geometry, the flow around the model has many features of the complex, fully 3D flow around real cars. The third example, for which LES is presented, is the flow past a surface mounted circular cylinder of height-to-diameter ratio of 2.5. In this case also complex 3D flow develops with interaction of various vortices behind the cylinder. By means of these examples, the paper shows that complex turbulent flows of engineering relevance can be predicted realistically by DNS and LES, albeit at large cost. The methods are particularly suited and superior to RANS methods for situations where unsteadiness like shedding and large-scale structures dominate the flow, and DNS has evolved into an important tool for studying transition mechanisms.  相似文献   

13.
This paper investigates the use of LES for a flow around a three-dimensional axisymmetric hill. Two aspects of this simulation in particular are discussed here, the resolution and the inlet boundary conditions. In contrast to the LES of flows with sharp edge separations which do not require the near-wall dynamics to be fully resolved, the hill flow LES relies on the resolution of the upstream boundary layer in order to provoke the separation at a correct position. Although around 15 ×106 computational cells were used, the resolution of streaky structures in the near-wall region that are important for a LES is not achieved. Two different inlet boundary conditions were used: the steady experimental profile and the time-dependent boundary conditions produced from DNS results of low Reynolds number channel flow. No significant improvement in the results was obtained with the unsteady inlet condition. This indicates that, although the unsteady inlet boundary conditions may be necessary for a successful LES of this flow, they must be followed with the resolution of the boundary layer for a successful LES.  相似文献   

14.
Hybrid LES-RANS: An approach to make LES applicable at high Reynolds number   总被引:1,自引:0,他引:1  
The main bottle neck for using large eddy simulations (LES) at high Reynolds number is the requirement of very fine meshes near walls. Hybrid LES-Reynolds-averaged Navier-Stokes (RANS) was invented to get rid of this limitation. In this method, unsteady RANS (URANS) is used near walls and away from walls LES is used. The matching between URANS and LES takes place in the inner log-region. In the present paper, a method to improve standard LES-RANS is evaluated. The improvement consists of adding instantaneous turbulent fluctuations (forcing conditions) at the matching plane in order to provide the equations in the LES region with relevant turbulent structures. The fluctuations are taken from a DNS of a generic boundary layer. Simulations of fully developed channel flow and plane asymmetric diffuser flow are presented. Hybrid LES-RANS is used both with and without forcing conditions.  相似文献   

15.
We first recall the EDQNM two-point closure approach of three-dimensional isotropic turbulence. It allows in particular prediction of the infrared kinetic-energy dynamics (with ak 4 backscatter) and the associated time-decay law of kinetic-energy, useful in particular for one-point closure modelling. Afterwards, we show how the spectral eddy viscosity concept may be used for large-eddy simulations: we introduce the plateau-peak model and the spectral-dynamic models. They are applied to decaying isotropic turbulence, and allow recovery of the EDQNM infrared energy dynamics. Anew infrared k 2 law for the pressure spectrum, predicted by the closure, is also well verified. Assuming that subgrid scales are not too far from isotropy, the spectral-dynamic model is applied to the channel flow at h += 390, with statistics in very good agreement with DNS, while reducing considerably the computational time. We study with the aid of DNS and LES the case of the channel rotating about an axis of spanwise direction. The calculations allow to recover the universal linear behaviour of the mean velocity profile, with a local Rossby number equal to −1. We present also LES (using the Grenoble Filtered Structure-Function Model), of a turbulent boundary layer passing over a cavity. Finally, we make some remarks on the future of LES for industrial applications. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The objective of the current study is to examine the course of events leading to stall just before its occurrence. The stall mechanisms are very sensitive to the transition that the boundary layer undergoes near the leading edge of the profile by a so-called laminar separation bubble (LSB). In order to provide helpful insights into this complex flow, a zonal Reynolds-averaged Navier–Stokes (RANS)/large-eddy simulation (LES) simulation of the flow around an airfoil near stall has been achieved and its results are presented and analyzed in this paper. LSB has already been numerically studied by direct numerical simulation (DNS) or LES, but for a flat plate with an adverse pressure gradient only. We intend, in this paper, to achieve a detailed analysis of the transition process by a LSB in more realistic conditions. The comparison with a linear instability analysis has shown that the numerical instability mechanism in the LSB provides the expected frequency of the perturbations. Furthermore, the right order of magnitude for the turbulence intensities at the reattachment point is found.   相似文献   

17.
We compare the space-time correlations calculated from direct numerical simulation(DNS) and large-eddy simulation(LES) of turbulent channel flows.It is found from the comparisons that the LES with an eddy-viscosity subgrid scale(SGS) model over-predicts the space-time correlations than the DNS.The overpredictions are further quantified by the integral scales of directional correlations and convection velocities.A physical argument for the overprediction is provided that the eddy-viscosity SGS model alone does not includes the backscatter effects although it correctly represents the energy dissipations of SGS motions.This argument is confirmed by the recently developed elliptic model for space-time correlations in turbulent shear flows.It suggests that enstrophy is crucial to the LES prediction of spacetime correlations.The random forcing models and stochastic SGS models are proposed to overcome the overpredictions on space-time correlations.  相似文献   

18.
LES and RANS for Turbulent Flow over Arrays of Wall-Mounted Obstacles   总被引:2,自引:0,他引:2  
Large-eddy simulation (LES) has been applied to calculate the turbulent flow over staggered wall-mounted cubes and staggered random arrays of obstacles with area density 25%, at Reynolds numbers between 5 × 103 and 5 106, based on the free stream velocity and the obstacle height. Re = 5 × 103 data were intensively validated against direct numerical simulation (DNS) results at the same Re and experimental data obtained in a boundary layer developing over an identical roughness and at a rather higher Re. The results collectively confirm that Reynolds number dependency is very weak, principally because the surface drag is predominantly form drag and the turbulence production process is at scales comparable to the roughness element sizes. LES is thus able to simulate turbulent flow over the urban-like obstacles at high Re with grids that would be far too coarse for adequate computation of corresponding smooth-wall flows. Comparison between LES and steady Reynolds-averaged Navier-Stokes (RANS) results are included, emphasising that the latter are inadequate, especially within the canopy region.  相似文献   

19.
包芸  习令楚 《力学学报》2020,52(3):656-662
在环境流体力学中,风场是风沙流、风雪流等自然环境特性问题研究的动力源和基础. 通常采用壁湍流模型进行风场大涡模拟(large eddy simulation, LES)计算,但受到计算规模的限制使得 高雷诺数风场的模拟计算难以实现. 并行计算技术是解决大规模高雷诺数风场大涡模拟的关键技术之一. 在不可压湍流风场的LES模拟中,压力泊松方程的并行计算技术是进行规模并行计算的困难点. 根据风场流动模拟计算的特点,采用水平网格等距而垂直于地面网格非等距,在解决规模并行计算中求解压力泊松方程的难点问题时,利用FFT解耦三维泊松方程使其变为垂向的一维三对角方程, 并利用可并行的三对角方程PDD求解技术,可建立三维泊松方程的直接并行求解技术. 结合其它容易并行的动量方程计算,本文建立风场LES模拟的并行直接求解方法(parallel direct method-LES, PDM-LES). 在超级计算机上对新方法进行并行效率测试,并行计算效率达到90${\%}$. 新的方法可用于进行湍流风场大涡模拟的大规模并行计算. 计算结果表明,湍流风场瞬时速度分布近壁面存在条带状的拟序结构,平均场的速度分布符合速度对数律特性,风场湍流特性基本合理.   相似文献   

20.
Large Eddy Simulations (LES) of spatially developing turbulent mixing layers have been performed for flows of uniform density and Reynolds numbers of up to 50,000 based on the visual thickness of the layer and the velocity difference across it. On a fine LES grid, a validation simulation performed with a hyperbolic tangent inflow profile produces flow statistics that compare extremely well with reference Direct Numerical Simulation (DNS) data. An inflow profile derived from laminar Blasius profiles produces a flow that is significantly different to the reference DNS, particularly with respect to the initial development of the flow. When compared with experimental data, however, it is the boundary layer-type inflow simulation produces the better prediction of the flow statistics, including the mean transition location. It is found that the boundary layer inflow condition is more unstable than the hyperbolic tangent inlet profile. A suitably designed coarse LES grid produces good predictions of the mean transition location with boundary layer inflow conditions at a low computational cost. The results suggest that hyperbolic tangent functions may produce unreliable DNS data when used as the initial condition for studies of the transition in the mixing layer flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号