首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
吴量  陈方  黄重阳  丁国辉  丁义明 《物理学报》2016,65(10):107601-107601
核磁共振T2谱多指数反演算法是开展复杂体系样品核磁共振(NMR)弛豫研究最重要的数学工具. 常用的T2谱多指数反演算法一般都是事先给出弛豫时间T2分布的布点, 然后转化为线性拟合问题进行求解. 在求解的T2谱较为分散的时候, 反演得到的T2谱精确度不高, 分辨率较低. 非线性拟合是解决这个问题的有效办法. 本文针对分散T2谱反演利用非线性拟合时遇到的初值依赖及运算复杂问题, 利用线性回归最小二乘方法, 改进了其中的带非负约束非线性优化模型, 将搜索的反演参数从T2, f 减少为T2, 加快了收敛速度, 减少了对初值的依赖, 提高了反演精度, 使算法更加稳健. 通过用改进的Levenberg-Marquardt算法和差分进化算法进行计算机模拟反演及实验数据反演, 验证了改进方法在核磁共振T2 谱反演中的有效性.  相似文献   

2.
慢性电刺激海马结构诱发大鼠脑磁共振成像异常信号分析   总被引:2,自引:0,他引:2  
为探讨海马结构(hippocampal formation)功能失衡与癫痫源性脑损伤的关系,本工作采用 慢性强直电刺激大鼠海马(hippocampus, HPC) CA1顶树突区(apical dendrite region, A DR)或齿状回(dentate gyrus, DG)诱发大鼠癫痫模型,一天一次,连续刺激6~8天后, 观察人工致痫灶以外的横向弛豫时间加权的核磁共振(T2 weighted magnetic reson ance im age, T2-WI) 绝对信号值变化(片厚1mm),以及深部电图和原发性湿狗颤抖(pri mary wet dog shakes, WEDS),并对被检测动物T2-WI信号异常的相应脑区进行组织学鉴定. 结果表明:(1)电 刺激大 鼠ADR或DG的作用基本相似,引起深部电图的癫痫样电活动和侧脑室区域T2值增强.(2)含有电极尖端痕迹的核磁共振(magnetic resonance image,MRI)脑切片出现对称性腹部侧脑室区域T2值增强,连续向后1mm取MRI脑切片进行观察发现,对侧腹部侧脑室区域信号异常. (3)组织学切片观察到:MRI检测的侧脑室区域T2-WI信号增强与组织切片的侧脑室扩大相吻合,可见扩大的侧脑室中脉络丛上皮细胞病理性增生现象. 提示:在大鼠癫痫点燃现象出现之前,过度激活DG或ADR均可引起相似的早期癫痫源性脑损伤.  相似文献   

3.
沈光先  汪荣凯  令狐荣锋  杨向东 《物理学报》2011,60(1):13101-013101
采用超分子单双迭代(包括非迭代三重激发)耦合簇理论CCSD(T)方法,选择由原子中心高斯函数和高斯键函数3s3p2d1f组成的大基组,计算了He-H2(D2,T2)碰撞体系的H2分子取不同键长时的相互作用势能面.运用Tang-Toennies势模型和非线性最小二乘法拟合构造了He与同位素分子H2(D2,T2)在质心坐标系下的振转相互作用势.通过密耦计算得 关键词: 高斯键函数 Tang-Toennies势函数 分波截面 碰撞参数  相似文献   

4.
叶笑蓉  曹佑安  杨奇斌 《物理学报》2001,50(6):1139-1144
从NTN=T这一晶体学的普遍公式出发,推导出在三维空间中度量张量矩阵T有四个算术不等价类,即公式见正文,而T1,T3,T4属几何等价类,故几何不等价类只有T1及T2.根据NT1 N=T1及NT2 N=T2求出三维晶体学的两个极大有限群分别为48阶及24阶,它们对应于两个晶体学点群,其他三十个点群则可通过母子群网 关键词: 晶体学 对称群 有限群  相似文献   

5.
本文用固体高分辨NMR技术测量了AB-交联聚合物(即ABCP)PPU/PS(聚氨酯/聚苯乙烯)中侧甲基的13C弛豫时间T1。使用分子内旋转的平均谱密度函数分析了ABCP中CH3侧基的内旋转运动。结果表明PPU/PS,ABCP中PPU的CH3侧基运动与PS的含量有关。当体系发生相反转时,侧甲基的运动也发生一转变。这反映了侧甲基的运动与ABCP的宏观性质密切相关。对该ABCP体系还进行了1H T1ρ的测量,分析了其相容性。  相似文献   

6.
磁共振成像是根据生物磁性核在磁场中表现的共振特性进行成像的新技术,其中弛豫时间是实现和控制成像的重要物理量.本文使用磁共振成像实验仪,对相关样品的纵向弛豫时间T1、横向弛豫时间T2进行测量,并且基于不同弛豫时间采用自旋回波序列实现T1、T2加权像,用反转恢复成像序列实现磁共振成像对脂肪的抑制.  相似文献   

7.
利用透射电子显微镜对Ni67Zr33非晶合金晶化的研究发现了两个新的亚稳相T0与T10。其中T1相为体心正交(准四方〕晶体,点阵常数a≌b=0.89nm,c=3.14nm,空间群为Iba2或Ibam。温度升高,T1相转变为含有大量错排的A心正交Ni10Zr2相,用1/2(a+b)位移错排模型可以圆满地解释其电子衍射图中仅h+k为奇数的衍射斑沿c*方向拉长的现象,晶化稳定相为Ni10Zr,与Ni21Zr8(Ni5Zr2)相。 关键词:  相似文献   

8.
王兵  吴秀清  邵继红 《物理学报》2009,58(3):1391-1395
利用统一色噪声近似理论,研究乘性色噪声和加性色噪声驱动的非对称双稳系统中,势阱的非对称性和噪声对系统两个方向的平均第一穿越时间T+(xs1→xs2)和T-(xs2→xs1)的影响(xs1和xs2是双稳系统的两个稳定点).数值结果表明:T+(xs1→xs2)随乘性噪声的自关联时间τ1以及加性噪声的自关联时间τ2的增大而减小.T-(xs2→xs1)随乘性噪声的自关联时间τ1以及加性噪声的自关联时间τ2的增大而增大.在曲线(T+(xs1→xs2),λ)和(T-(xs2→xs1),λ)上都存在单峰.T+(xs1→xs2)随非对称系数r的增大而增大,T-(xs2→xs1)随非对称系数r的增大而减小. 关键词: 统一色噪声近似 平均第一穿越时间 加性色噪声 乘性色噪声  相似文献   

9.
利用变温7LiNMR实验对Li-电池正极材料LiMn2O4和LiCoO2中Li+的运动特性进行了研究,结果表明,随实验温度的提高,LiMn2O47LiNMR谱线窄化,表明其中Li+迁移能力增加,而LiCoO2的谱线无变化.此外随温度提高,LiMn2O47Li的T1变短,而LiCoO2的T1变长,产生这种不同变化趋势的原因在于LiMn2O4和LiCoO2晶相结构的差异造成其中Li+迁移能力的差别,它们各自的相关时间τc使7Li核的T1分别位于T1-τc曲线极小点两侧.  相似文献   

10.
用CPMG脉冲序列测定了表面活性剂十六烷基三甲基溴化铵(CTAB)分子中的氮甲基(N-CH3)质子的横向弛豫时间(T2表观),并发现测得的T2表观\}与序列中的重聚脉冲间隔时间的一半τ cp有关,说明存在横向弛豫分散现象. 当在τcp≤1 ms时,T2表观与τ2cp}呈线性关系;而当τcp≥4.6 ms时,T2表观变得与τcp无关. 利用Luz-Meiboom两体化学交换模型计算了不同浓度的CTAB溶液中的N-CH3质子的本征横向弛豫时间(T2本征)和化学交换速率kex,发现kex与T2本征和自扩散系数D一样,在临界胶束浓度(CMC)附近发生突变. 这个突变反映了CTAB分子在从单体到胶束的转变过程中其动力学特性发生了改变.   相似文献   

11.
Dynamic contrast-enhanced (DCE) T(1)-weighted magnetic resonance imaging (MRI) is a powerful tool capable of providing quantitative assessment of contrast uptake and characterization of microvascular structure in human gliomas. The kinetics of the bolus injection doped with increasing concentrations of gadopentate dimeglumine (Gd-DTPA) depends on tissue as well as pulse sequence parameters. A simple method is described that overcomes the limitation of relative signal increase measurement and may lead to improved accuracy in quantification of perfusion indices of glioma. Based on an analysis of the contrast behavior of spoiled gradient-recalled echo sequence; a parameter K with arbitrary unit 5.0 is introduced, which provides a better approximation to the differential T(1) relaxation rate. DCE-MRI measurements of relative cerebral blood volume (rCBV) and cerebral blood flow (rCBF) were calculated in 25 patients with brain tumors (15=high-grade glioma, 10=low-grade glioma). The mean rCBV was 6.46 +/- 2.45 in high-grade glioma and 2.89 +/- 1.47 in the low-grade glioma. The rCBF was 3.94 +/- 1.47 in high-grade glioma while 2.25 +/- 0.87 in low-grade glioma. A significant difference in rCBF and rCBV was found between high- and low-grade gliomas. This simple and robust technique reveals the complexity of tumor vasculature and heterogeneity that may aid in therapeutic management especially in nonenhancing high-grade gliomas. We conclude that the precontrast medium steady-state residue parameter K may be useful in improved quantification of perfusion indices in human glioma using T(1)-weighted DCE-MRI.  相似文献   

12.
Previous studies have shown that T2(dagger)-weighted magnetic resonance images acquired using localization by adiabatic selective refocusing (LASER) can provide early tissue contrast following ischemia, possibly due to alterations in microscopic susceptibility within the tissue. The purpose of this study was to make a direct in vivo comparison of T2-, T2(dagger)- and diffusion-weighted image contrast during acute ischemia. Acute middle cerebral artery (MCA) occlusion was attempted in 14 rats using a modified Tamura approach incorporating electrocoagulation of the left MCA. T2(dagger)-weighted LASER images (Echo Time [TE]=108 ms), T2-weighted Carr-Purcell-Meiboom-Gill (CPMG) images (TE=110 ms) and diffusion-weighted images (b value=105 s/mm(2)) were acquired at 4 T within 1.5 h of ischemia onset. Tissue contrast in the MCA territory was quantified for histologically verified ischemic tissue (n=6) and in sham controls (n=4). T2(dagger)-weighted LASER images demonstrated greater contrast compared to the T2-weighted CPMG images, and more focal contrast compared to the diffusion-weighted images, suggesting different contrast mechanisms were involved.  相似文献   

13.
Multiecho T2 relaxation measurements to determine geometric mean T2 (GMT2) and myelin water fraction (MWF) are lengthy, resulting in increased motion artefacts from patient discomfort and reduced patient compliance. The goal of this study was to shorten the acquisition time for multiecho T2 measurements without affecting T1 weighting by varying TR across k-space. Six phantoms and 10 healthy volunteers were imaged with both a constant TR and a variable TR multiecho T2 sequence. T1 weighting was determined by TR at the center of k-space; for variable TR measurement, TR was shortened linearly from the center to the edges of k-space. Phantoms showed excellent agreement for proton density and GMT2 between constant and variable TR measurements. No significant differences were found in proton density or MWF for any of the brain structures between the two measurements. The average GMT2 over all structures between the two experiments was not significantly different. In summary, with the variable TR approach, scan time was reduced by >20%, with minimal loss of image resolution and no significant affect on proton density, MWF or GMT2.  相似文献   

14.
A 48-echo pulse sequence with five different echo-spacing combinations was examined to determine how one can most effectively measure the T2 relaxation characteristics of cerebral tissue containing a long T2 component. For each scan, the first 32 echoes had an echo spacing of 10 ms, while the spacing for Echoes 33-48 (DeltaTE2) was 10, 20, 30, 40 or 50 ms. In an in vivo study using 10 normal volunteers, it was found that the resolution of T2 distribution peaks for both myelin water (approximately 20 ms) and intracellular/extracellular (IE) water (approximately 80 ms) improved as DeltaTE2 increased. The geometric mean T2 values of the main peak agreed within the error for all DeltaTE2 values. A phantom study simulated T2 relaxation distributions that are expected in the brains of patients with demyelinating diseases. For phantoms in which the T2 values of the IE and lesion (200-500 ms) water compartments were separated by at least a factor of 3, each compartment in the distribution was better resolved when DeltaTE2=40 or 50 ms. On the basis of these results, we recommend the use of extended DeltaTE2 values for imaging patients with lesions, without the risk of losing valuable short T2 information.  相似文献   

15.
Depth and orientational dependencies of microscopic magnetic resonance imaging (MRI) T(2) and T(1ρ) sensitivities were studied in native and trypsin-degraded articular cartilage before and after being soaked in 1 mM Gd-DTPA(2-) solution. When the cartilage surface was perpendicular to B(0), a typical laminar appearance was visible in T(2)-weighted images but not in T(1ρ)-weighted images, especially when the spin-lock field was high (2 kHz). At the magic angle (55°) orientation, neither T(2)- nor T(1ρ)-weighted image had a laminar appearance. Trypsin degradation caused a depth- and orientational-dependent T(2) increase (4%-64%) and a more uniform T(1ρ) increase at a sufficiently high spin-lock field (55%-81%). The presence of the Gd ions caused both T(2) and T(1ρ) to decrease significantly in the degraded tissue (6%-38% and 44%-49%, respectively) but less notably in the native tissue (5%-10% and 16%-28%, respectively). A quantity Sensitivity was introduced that combined both the percentage change and the absolute change in the relaxation analysis. An MRI experimental protocol based on two T(1ρ) measurements (without and with the presence of the Gd ions) was proposed to be a new imaging marker for cartilage degradation.  相似文献   

16.
The quantitative assessment of gene expression and related enzyme activity in vivo could be important for the characterization of gene altering diseases and therapy. The development of imaging techniques, based on specific reporter molecules may enable routine non-invasive assessment of enzyme activity and gene expression in vivo. We recently reported the use of commercially available S-Gal® as a β-galactosidase reporter for 1H MRI, and the synthesis of several S-Gal® analogs with enhanced response to β-galactosidase activity. We have now compared these analogs in vitro and have identified the optimal analog, C3-GD, based on strong T1 and T2 response to enzyme presence (ΔR1 and ΔR2 ~ 1.8 times S-Gal®). Moreover, application is demonstrated in vivo in human breast tumor xenografts. MRI studies in MCF7-lacZ tumors implanted subcutaneously in athymic nude mice (n = 6), showed significant reduction in T1 and T2 values (each ~ 13%) 2 h after intra-tumoral injection of C3-GD, whereas the MCF7 (wild type) tumors showed slight increase. Thus, C3-GD successfully detects β-galactosidase activity in vivo and shows promise as a lacZ gene 1H MR reporter molecule.  相似文献   

17.
To acquire high-resolution T(1)-weighted images of the liver in rats, for which breath-holding cannot be ensured, respiratory triggering is essential. At the respiratory rate of 30-60 times/min in rats, however, T(1)-weighted images cannot be obtained with simple triggering. As a simple solution to this, we applied multiple repeated acquisitions with one trigger signal. With this technique, sufficient T(1) contrast could be easily achieved in rat liver enhanced by gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid infusion.  相似文献   

18.
This study investigated the feasibility of an MRI protocol providing whole-body T2* maps at 1.5 T. Seven healthy volunteers (mean age=30.1+/-3.7, three women and four men) and two patients (both male, 53 and 46 years old) affected by transfusion-dependent anemias participated in the study. Coronally oriented images of five subsequent body levels were acquired using a fat-suppressed multiecho 2D gradient-echo sequence (12 echo times ranging from 4.8 to 76.3 ms were selected) and afterwards composed. Parametrical T2* maps of the whole body were reconstructed on a pixel-by-pixel basis. For both, healthy volunteers and patients, representative T2* values were computed from extended regions of interest (ROIs). Good-quality whole-body T2* maps were computed in all volunteers and patients. In healthy volunteers, T2* values were assessed in the cerebral white (58.5+/-4.2 ms) and gray (81.4+/-5.5 ms) matter, liver (34.3+/-7.0 ms), spleen (63.5+/-3.3 ms), kidneys (65.4+/-10.3 ms) and skeletal muscles (~30 ms). The liver presented faster relaxation rates in males as compared to females. One patient (serum ferritin concentration=927 microg/dl) showed shortened T2* values in liver (3.6+/-5.5 ms), spleen (3.1+/-4.8 ms), kidneys (11.1+/-7.1 ms) and muscles (25.1+/-3.4 ms). The second patient (serum ferritin concentration=346 microg/dl) presented reduced T2* values in liver (3.9+/-7.3 ms), spleen (20.1+/-9.8 ms) and kidneys (24.6+/-7.7 ms). The presented technique may find clinical application in the assessment of the iron burden in the entire body, and in monitoring of chelation therapies in patients treated with frequent blood transfusions.  相似文献   

19.
T2* measurements in human brain at 1.5, 3 and 7 T   总被引:1,自引:0,他引:1  
Measurements have been carried out in six subjects at magnetic fields of 1.5, 3 and 7 T, with the aim of characterizing the variation of T2* with field strength in human brain. Accurate measurement of T2* in the presence of macroscopic magnetic field inhomogeneity is problematic due to signal decay resulting from through-slice dephasing. The approach employed here allowed the signal decay due to through-slice dephasing to be characterized and removed from data, thus facilitating an accurate measurement of T2* even at ultrahigh field. Using double inversion recovery turbo spin-echo images for tissue classification, an analysis of T2* relaxation times in cortical grey matter and white matter was carried out, along with an evaluation of the variation of T2* with field strength in the caudate nucleus and putamen. The results show an approximately linear increase in relaxation rate R2* with field strength for all tissues, leading to a greater range of relaxation times across tissue types at 7 T that can be exploited in high-resolution T2*-weighted imaging.  相似文献   

20.
It has previously been observed that during isometric dorsiflexion exercise, the time course of T2-weighted signal intensity (SI) changes is spatially heterogeneous. The purpose of this study was to test the hypothesis that this spatial heterogeneity would increase at higher contraction intensities. Eight subjects performed 90-s isometric dorsiflexion contractions at 30% and 60% of maximum voluntary contraction (MVC) while T2-weighted (repetition time/echo time=4000/35 ms) images were acquired. SI was measured before, during and after the contractions in regions of interest (ROIs) in the extensor digitorum longus (EDL) muscle and the deep and superficial compartments of the tibialis anterior (D-TA and S-TA, respectively). For all ROIs at 30% MVC, SI changes were similar. The maximum postcontraction SI was greater than the SI during exercise. At 60% MVC, SI changes during contraction were greater in the S-TA than in the D-TA and EDL. For the EDL and D-TA, the maximum postcontraction SI was greater than those during exercise. For the S-TA, the maximum postcontraction change was greater than the changes at t=8, 20 and 56 s but not the end-exercise value. We conclude that spatial heterogeneity increases during more intense dorsiflexion contractions, possibly reflecting regional differences in perfusion or neural activation of the muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号