首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study demonstrates how positive ion atmospheric pressure photoionization-ion mobility spectrometry-mass spectrometry (APPI-IMS-MS) can be used to produce different ionic forms of an analy te and how these can be separated. When hexane:toluene (9:1) is used as a solvent, 2,6-di-tert-butylpyridine (2,6-DtBPyr) and 2,6-di-tert-4-methylpyridine (2,6-DtB-4-MPyr) efficiently produce radical cations [M]+ and protonated [M + H]+ molecules, whereas, when the sample solvent is hexane, protonated molecules are mainly formed. Interestingly, radical cations drift slower in the drift tube than the protonated molecules. It was observed that an oxygen adduct ion, [M + O2]+, which was clearly seen in the mass spectra for hexane:toluene (9:1) solutions, shares the same mobility with radical cations, [M]+. Therefore, the observed mobility order is most likely explained by oxygen adduct formation, i.e., the radical cation forrning a heavier adduct. For pyridine and 2-tert-butylpyridine, only protonated molecules could be efficiently formed in the conditions used. For 1- and 2-naphthol it was observed that in hexane the protonated molecule typically had a higher intensity than the radical cation, whereas in hexane:toluene (9:1) the radical cation [M]+ typically had a higher intensity than the protonated molecule [M + H]+. Interestingly, the latter drifts slower than the radical cation [M]+, which is the opposite of the drift pattern seen for 2,6-DtBPyr and 2,6-DtB-4-MPyr.  相似文献   

2.
In this work, we describe two different methods for generating protonated S-nitrosocysteine in the gas phase. The first method involves a gas-phase reaction of protonated cysteine with t-butylnitrite, while the second method uses a solution-based transnitrosylation reaction of cysteine with S-nitrosoglutathione followed by transfer of the resulting S-nitrosocysteine into the gas phase by electrospray ionization mass spectrometry (ESI-MS). Independent of the way it was formed, protonated S-nitrosocysteine readily fragments via bond homolysis to form a long-lived radical cation of cysteine (Cys•+), which fragments under collision-induced dissociation (CID) conditions via losses in the following relative abundance order: •COOH ≫ CH2S > •CH2SH-H2S. Deuterium labeling experiments were performed to study the mechanisms leading to these pathways. DFT calculations were also used to probe aspects of the fragmentation of protonated S-nitrosocysteine and the radical cation of cysteine. NO loss is found to be the lowest energy channel for the former ion, while the initially formed distonic Cys•+ with a sulfur radical site undergoes proton and/or H atom transfer reactions that precede the losses of CH2S, •COOH, •CH2SH, and H2S.  相似文献   

3.
Fragmentations of tautomers of the α-centered radical triglycine radical cation, [GGG]+, [GGG]+, and [GGG]+, are charge-driven, giving b-type ions; these are processes that are facilitated by a mobile proton, as in the fragmentation of protonated triglycine (Rodriquez, C. F. et al. J. Am. Chem. Soc. 2001, 123, 3006–3012). By contrast, radical centers are less mobile. Two mechanisms have been examined theoretically utilizing density functional theory and Rice-Ramsperger-Kassel-Marcus modeling: (1) a direct hydrogen-atom migration between two α-carbons, and (2) a two-step proton migration involving canonical [GGG]•+ as an intermediate. Predictions employing the latter mechanism are in good agreement with results of recent CID experiments (Chu, I. K. et al. J. Am. Chem. Soc. 2008, 130, 7862–7872).  相似文献   

4.
In this study, we observed unprecedented cleavages of the Cβ–Cγ bonds of tryptophan residue side chains in a series of hydrogen-deficient tryptophan-containing peptide radical cations (M•+) during low-energy collision-induced dissociation (CID). We used CID experiments and theoretical density functional theory (DFT) calculations to study the mechanism of this bond cleavage, which forms [M – 116]+ ions. The formation of an α-carbon radical intermediate at the tryptophan residue for the subsequent Cβ–Cγ bond cleavage is analogous to that occurring at leucine residues, producing the same product ions; this hypothesis was supported by the identical product ion spectra of [LGGGH – 43]+ and [WGGGH – 116]+, obtained from the CID of [LGGGH]•+ and [WGGGH]•+, respectively. Elimination of the neutral 116-Da radical requires inevitable dehydrogenation of the indole nitrogen atom, leaving the radical centered formally on the indole nitrogen atom ([Ind]-2), in agreement with the CID data for [WGGGH]•+ and [W1-CH3GGGH]•+; replacing the tryptophan residue with a 1-methyltryptophan residue results in a change of the base peak from that arising from a neutral radical loss (116 Da) to that arising from a molecule loss (131 Da), both originating from Cβ–Cγ bond cleavage. Hydrogen atom transfer or proton transfer to the γ-carbon atom of the tryptophan residue weakens the Cβ–Cγ bond and, therefore, decreases the dissociation energy barrier dramatically.  相似文献   

5.
 To explore the interactions between ubiquinones and oxygen in living organisms, the thermodynamics of a series of electron and hydrogen transfer reactions between semiquinone radicals, as well as their corresponding protonated forms, and oxygen, singlet or triplet, were studied using the hybrid Hartree–Fock–density functional theory method Becke's three parameter hybrid method with the Lee, Yang, and Parr correlation functional. Effects of the solvent and of the isoprenyl tail on the electron and hydrogen transfer reactions were also investigated. It is found that semiquinone radicals (semiquinone anion radicals or protonated semiquinone radicals) cannot react with triplet oxygen to form the superoxide anion radical O2 . In contrast, neutral quinones can scavenge O2 efficiently. In the gas phase, only protonated semiquinone radicals can react spontaneously with singlet oxygen to produce peroxyl radical (HO2). However, both semiquinone anion radicals and protonated semiquinone radicals can react with singlet oxygen to produce harmful oxygen radicals (O2 a l l b u l l and HO2, respectively) in aqueous and protein environments. The free-energy changes of the corresponding reactions obtained for different ubiquinone systems are very similar. It clearly shows that the isoprenyl tail does not influence the electron and hydrogen transfer reactions between semiquinone radicals and oxygen significantly. Results of electron affinities, vertical ionization potentials, and proton affinities also show that the isoprenyl tail has no substantial effect on the electronic properties of ubiquinones. Received: 3 July 2000 / Accepted: 6 September 2000 / Published online: 21 December 2000  相似文献   

6.
Hypervalent organic ammonium radicals were generated by collisional neutralization with dimethyl disulfide of protonated 1,4-diazabicyclo[2.2.2]octane (1H+), N,N′-dimethylpiperazine (2H+) and N-methylpiperazine (3H+). The radicals dissociated completely on the 5.1 μs time-scale. Radical 1H underwent competitive N−H and N−C bond dissociations producing 1,4-diazabicyclo[2.2.2]octane and small ring fragments. Dissociations of radical 2H proceeded by N−H bond dissociation and ring cleavage, whereas N−CH3 bond cleavage was less frequent. Radical 3H underwent N−H, N−CH3 and N−Cring bond cleavages followed by post-reionization dissociations of the formed cations. The pattern of bond dissociations in the hypervalent ammonium radicals derived from six-membered nitrogen heterocycles is similar to those of aliphatic ammonium radicals. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
Under the conditions of electrospray ionization of ferrocenylalkyl azoles FcCH(R)X (Fc-η5-C5H5Fe-η5-C5H4, R - H, Me, XH - 2-methyl imidazole, pirazole) the processes of oxidation, protonation, fragmentation and ferrocenylalkylation to form, molecular ions [М]+, protonated molecules [М+Н]+, ferrocenylalkyl cations [FсCHR]+ and bisferrocenylalkyl azole cations [(FcCHR)2X]+, respectively, take place. Using special experimental techniques (deuterated solvents, saturation of ionic source of an ESI mass-spectrometer by the vapors of solvents, the experiments under the “inverse” ESI conditions when the solvent is subjected to electrospray in the presence of ferrocenylalkyl derivative vapours) and quantum-chemical calculations at the level of the B3LYP/LanL2DZ theory the scheme of the formation of these ions in a gas phase according to the mechanism of “activating protonation” was suggested. it was found that all these ions are formed through the protonation stage, which is taking place mainly in a gas phase. The key stage is the exothermic process of the protonation of the initial compounds by hydroxonium ions giving rise to protonated [M+H]+ molecules which further oxidize and alkylate ferrocenylalkylazoles to form molecular radical cations and bisferrocenylalkyl azole ions [FcCH(Me)-X-CH(Me)Fc]+. The decomposition of protonated ions with the elimination of the azole molecule gives rise to ferrocenylalkyl cations [FсCHR]+ capable in turn of oxidizing and alkylating the initial compounds.  相似文献   

8.
A series of radicals formed when a fast beam of deuterated ions, [DCO] +, [DOCO] +, [CD3OD2]+ and [(CD) 2COD] +, is neutralized by electron transfer from K. Na and Zn atoms has been studied by a combination of charge stripping and beam scattering techniques For all systems studied, some fraction of The radicals from charge exchange are formed in excited dissociative states. Radical decomposition products have been identified and fragmentation energies have been measured. A metastable slate of CD3GD2 is observed with a lifetime greater than 0.5 μs. Stable radicals of DCO and (CD3)2 COD are formed by ion–Zn charge exchange. Indirect evidence indicates that [DCO] +–K charge exchang; leads to an excited radiative state of the radical.  相似文献   

9.
Matrix assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) and theoretical calculations [density functional theory (DFT)] were utilized to investigate the influence of cysteine side chain on Cu+ binding to peptides and how Cu+ ions competitively interact with cysteine (−SH/SO3H) versus arginine. Results from theoretical and experimental (fragmentation reactions) studies on [M+Cu]+ and [M+2Cu−H]+ ions suggest that cysteine side chains (−SH) and cysteic acid (−SO3H) are important Cu+ ligands. For example, we show that Cu+ ions are competitively coordinated to the −SH or SO3H groups; however, we also present evidence that the proton of the SH/SO3H group is mobile and can be transferred to the arginine guanidine group. For [M+2Cu−H]+ ions, deprotonation of the −SH/SO3H group is energetically more favorable than that of the carboxyl group, and the resulting thiolate/sulfonate group plays an important role in the coordination structure of [M+2Cu−H]+ ions, as well as the fragmentation patterns.  相似文献   

10.
Protonated nitroarginine, [RNO2 + H]+, which contains the nitroguanidine ‘explosophore,’ undergoes homolytic N – N nitro-imine bond cleavage to expel NO2 ? and form a radical cation of arginine in high yield (100 % relative abundance) upon low-energy collision-induced dissociation (CID). Other ionization states of nitroarginine, including [RNO2 - H], and a fixed-charge derivative of nitroarginine do not expel NO2 ? (<1 %), but instead dissociate via heterolytic bond cleavage with abundant losses of small molecules (N2O and H2N2O2) from the nitroguanidine group. The effects of proton mobility on the CID reactions of nitroarginine containing peptides was investigated for peptide derivatives of leucine enkephalin, including XYGGFLRNO2, X = D, G, K, and R, by examining the different protonation states: [M – H]; [M + H]+; and [M + 2H]2+. For [M + H]+ containing the less basic N-terminal residues (X = D, G) and all [M + 2H]2+, mobile proton fragmentation reactions that result in peptide sequence ions dominate. In contrast, for peptides containing the basic N-terminal residues (R and K), the CID spectra of both the [M – H] and [M + H]+ are dominated by the losses of small even-electron neutrals from the nitroarginine side-chain. The fraction of nitroguanidine directed fragmentation of the nitroarginine side chain that results in bond homolysis to form [XYGGFLR]+? by expulsion of NO2 ? increases by more than 10 times as the protonation state changes from [M – H] (<10 %) to [M + 2H]2+ (ca. 90 %) and by about four times as the acidity of the [M + H]+ N-terminal residue increases from R (19.0 %) to D (76.5 %). These results indicate that protonated peptides containing nitroarginine can undergo non-canonical mobile proton triggered radical fragmentation.
Figure
?  相似文献   

11.
The ion-molecule reactions of dimethyl ether ions CH3OCH3 + and (CH3OCH3)H+, and four- to seven-membered ring lactams with methyl substituents in various positions were characterized by using a quadrupole ion trap mass spectrometer and a triple-quadrupole mass spectrometer. In both instruments, the lactams were protonated by dimethyl ether ions and formed various combinations of [M + 13] +, [M + 15] +, and [M + 45] + adduct ions, as well as unusual [M + 3] + and [M + 16] + adduct ions. An additional [M + 47] + adduct ion was formed in the conventional chemical ionization source of the triple-quadrupole mass spectrometer. The product ions were isolated and collisionally activated in the quadrupole ion trap to understand formation pathways, structures, and characteristic dissociation pathways. Sequential activation experiments were performed to elucidate fragment ion structures and stepwise dissociation sequences. Protonated lactams dissociate by loss of water, ammonia, or methylamine; ammonia and carbon monoxide; and water and ammonia or methylamine. The [M + 16] + products, which are identified as protonated lactone structures, are only formed by those lactams that do not have an N-methyl substituent. The ion-molecule reactions of dimethyl ether ions with lactams were compared with those of analogous amides and lactones.  相似文献   

12.
Tertiary α-carbomethoxy-α,α-dimethyl-methyl cations a have been generated by electron impact induced fragmentation from the appropriately α-substituted methyl isobutyrates 1–4. The destabilized carbenium ions a can be distinguished from their more stable isomers protonated methyl methacrylate c and protonated methyl crotonate d by MIKE and CA spectra. The loss of I and Br˙ from the molecular ions of 1 and 2, respectively, predominantly gives rise to the destabilized ions a, whereas loss of Cl˙ from [3]+ ˙ results in a mixture of ions a and c. The loss of CH3˙ from [4]+˙ favours skeletal rearrangement leading to ions d. The characteristic reactions of the destabilized ions a are the loss of CO and elimination of methanol. The loss of CO is associated by a very large KER and non-statistical kinetic energy release (T50 = 920 meV). Specific deuterium labelling experiments indicate that the α-carbomethoxy-α,α-dimethyl-methyl cations a rearrange via a 1,4-H shift into the carbonyl protonated methyl methacrylate c and eventually into the alkyl-O protonated methyl methacrylate before the loss of methanol. The hydrogen rearrangements exhibit a deuterium isotope effect indicating substantial energy barriers between the [C5H9O2]+ isomers. Thus the destabilized carbenium ion a exists as a kinetically stable species within a potential energy well.  相似文献   

13.
Recent mass spectrometric studies of simple inorganic species (both charged and neutral) of main-group elements are reviewed, focusing attention on radicals and ions of interest to the chemistry of the atmosphere and its pollution. The examples illustrated concern the detection of HO3, hydrogen trioxide, the O2/O3 isotope exchange and its charged intermediate O5+, the reactions promoted by ionization of ozone/halocarbon mixtures in atmospheric gases, the ion chemistry of NOx oxides, and that of elemental chlorine and chlorine fluoride. Among the results of specific interest to gas-phase ion chemistry, the examples illustrated concern the intracluster ligand-switching reactions in ternary NO+ complexes, the NO2+ reactivity towards ethylene and acetylene, the gas-phase basicity of Cl2, the formation and characterization of Cl2X+ ions (X = Cl, F) and of [H3C-Cl-Cl]+, a new isomer of protonated dichloromethane.  相似文献   

14.
In this study, we generated phosphoserine- and phosphothreonine-containing peptide radical cations through low-energy collision-induced dissociation (CID) of the ternary metal?Cligand phosphorylated peptide complexes [CuII(terpy) p M]·2+ and [CoIII(salen) p M]·+ [ p M: phosphorylated angiotensin III derivative; terpy: 2,2':6',2''-terpyridine; salen: N,N '-ethylenebis(salicylideneiminato)]. Subsequent CID of the phosphorylated peptide radical cations ( p M·+) revealed fascinating gas-phase radical chemistry, yielding (1) charge-directed b- and y-type product ions, (2) radical-driven product ions through cleavages of peptide backbones and side chains, and (3) different degrees of formation of [M ?C H3PO4]·+ species through phosphate ester bond cleavage. The CID spectra of the p M·+ species and their non-phosphorylated analogues featured fragment ions of similar sequence, suggesting that the phosphoryl group did not play a significant role in the fragmentation of the peptide backbone or side chain. The extent of neutral H3PO4 loss was influenced by the peptide sequence and the initial sites of the charge and radical. A preliminary density functional theory study, at the B3LYP 6-311++G(d,p) level of theory, of the neutral loss of H3PO4 from a prototypical model??N-acetylphosphorylserine methylamide??revealed several factors governing the elimination of neutral phosphoryl groups through charge- and radical-induced mechanisms.  相似文献   

15.
N,N’-Diarylated tetrabenzotetraaza[8]circulenes 3 a and 3 b were synthesized in good yields by a reaction sequence involving oxidation of tetrabenzodiazadithia[8]circulene 5-Oct and SNAr reaction with aniline derivatives. The obtained aza[8]circulenes 3 a and 3 b were easily oxidized to give their radical cations 3 a+ and 3 b+ , which are highly stable under ambient conditions. X-ray diffraction analysis of radical cation 3 a+ showed a face-to-face dimer arrangement with an interplanar separation of 3.320 Å. The spin density of 3 a+ was calculated to be delocalized over the whole circulene π-systems with spin–spin exchange integral (J=−144 cm−1) in the dimeric part. These radical cations displayed far red-shifted absorption bands reaching to 2000 nm. Thus this study has proved the hetero[8]circulene scaffold to be a new entry of promising electronics and spin materials.  相似文献   

16.
The chemistry of glycerol subjected to a high-energy particle beam was explored by studying the mass spectral fragmentation characteristics of gas-phase protonated glycerol and its oligomers by using tandem mass spectrometry. Both unimolecular metastable and collision-induced dissociation reactions were studied. Collision activation of protonated glycerol results in elimiation of H2O and CH3OH molecules. The resulting ions undergo further fragmentations. The origin of several fragment ions was established by obtaining their product and precursor ion spectra. Corresponding data for the deuterated analogs support those results. The structures of the fragment ions of compositions [C3H5O]+, [C2H5O]+, [C2H4O]+. and [C2H3O]+ derived from protonated glycerol were also identified. Proton-bound glycerol oligomers fragment principally via loss of neutral glycerol molecules. Dissociation of mixed clusters of glycerol and deuterated glycerol displays normal secondary isotope effects.  相似文献   

17.
An O-methylated analog of protonated phenazine-di-N-oxide radical anion abstracts hydrogen from primary and secondary alcohols in a slow (k 1 < 500 M−1 s−1) bimolecular reaction. No kinetic evidence has been found for the unimolecular release of free methoxyl radicals through the homolytic N-OMe bond cleavage in these species. DFT calculations at the UB3LYP 6-31G(d) level indicate that protonated and O-alkylated radical anions of pyrazine, quinoxaline and phenazine di-N-oxides are close analogues of aromatic nitroxyl radicals with the highest spin density localized on the oxygen and nitrogen of the nitrone moiety.  相似文献   

18.
Experimental and theoretical studies on the oxidation of saturated hydrocarbons (n‐hexane, cyclohexane, n‐heptane, n‐octane and isooctane) and ethanol in 28 Torr O2 or air plasma generated by a hollow cathode discharge ion source were made. Ions corresponding to [M + 15]+ and [M + 13]+ in addition to [M ? H]+ and [M ? 3H]+ were detected as major ions where M is the sample molecule. The ions [M + 15]+ and [M + 13]+ were assigned as oxidation products, [M ? H + O]+ and [M ? 3H + O]+, respectively. By the tandem mass spectrometry analysis of [M ? H + O]+ and [M ? 3H + O]+, H2O, olefins (and/or cycloalkanes) and oxygen‐containing compounds were eliminated from these ions. Ozone as one of the terminal products in the O2 plasma was postulated as the oxidizing reagent. As an example, the reactions of C6H14+? with O2 and of C6H13+ (CH3CH2CH+CH2CH2CH3) with ozone were examined by density functional theory calculations. Nucleophilic interaction of ozone with C6H13+ leads to the formation of protonated ketone, CH3CH2C(=OH+)CH2CH2CH3. In air plasma, [M ? H + O]+ became predominant over carbocations, [M ? H]+ and [M ? 3H]+. For ethanol, the protonated acetic acid CH3C(OH)2+ (m/z 61.03) was formed as the oxidation product. The peaks at m/z 75.04 and 75.08 are assigned as protonated ethyl formate and protonated diethyl ether, respectively, and that at m/z 89.06 as protonated ethyl acetate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The electrospray ionization behavior of some ferrocenylalkylazoles CpFeC5H4CH(R)Az (AzH are derivatives of imidazole, pyrazole, triazole and their benzo analogs; R = H, Me, Et, Ph), ferrocenylalkanols CpFeC5H4CH(R)OH (R = H, Me), and mixtures of the latter with azoles was studied. The electrospray ionization mass spectra of these compounds, in addition to the molecular ion [M], the protonated molecule [M + H]+, and ferrocenylalkyl cation [FcCHR]+ peaks, exhibit also intensive peaks for the binuclear ions [(FcCHR)2X]+ (X = Az or O), resulting from ferrocenylalkylation of the initial compounds with the ferrocenylalkyl cations. Electrospray ionization of an equimolar mixture of ferrocenylmethanol FcCH2OH and imidazole gives the protonated ferrocenylmethylimidazole molecule [FcCH2Im + H]+ and the [FcCH2(Im)2 + H]+ dimer, apart from the ions typical of each component, i.e., ferrocenylalkylation of azoles with the ferrocenylalkylcarbinols, known in the chemistry of solutions, takes place under electrospray conditions. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1318–1321, August, 2006.  相似文献   

20.
This paper presents studies on paramagnetic intermediates, free atoms and radicals produced in γ-irradiated molecular sieves and their reactions with adsorbate molecules or exchangeable cations. Four different systems have been investigated using EPR spectroscopy, Na-A/CH4, AgNa-A/CH3OH, Ag-SAPO-11/C2H4 and AgCs-rho/NH3. It was found that methyl radicals are formed in two different sites in Na-A/CH4 and in one of them they are stable at room temperature. The formation of Ag·CH2OH+ radical cation with one-electron bond between silver and carbon has been established in AgNa-A/CH3OH by EPR experiments with [13C]CH3OH and DFT calculations. In Ag-SAPO-11/C2H4 the stabilisation of biligand silver/ethylene complex, Ag0(C2H4)2 was postulated based on EPR and DFT results. Tetrameric silver clusters (Ag 4 3+ ) produced radiolytically in AgCs-rho/NH3 strongly interact with two ammonia molecules as was deduced from the changes in superhyperfine structure of high-field EPR line of Ag 4 3+ pentet for zeolite exposed to [14N]NH3 and [15N]NH3. The presented examples clearly show that the combination of radiation methods with EPR technique is very useful to study the structure and reactivity of paramagnetic intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号