首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal behaviour of ammonium nitrate (AN) and its prills coated with limestone and dolomite powder was studied on the basis of commercial fertilizer-grade AN and six Estonian limestone and dolomite samples. Coating of AN prills was carried out on a plate granulator and a saturated solution of AN was used as a binding agent. The mass of AN prills and coating material was calculated based on the mole ratio of AN/(CaO + MgO) = 2:1. Thermal behaviour of AN and its coated prills was studied using combined TG-DTA-FTIR equipment. The experiments were carried out under dynamic heating conditions up to 900 °C at the heating rate of 10 °C min−1 and for calculation of kinetic parameters, additionally, at 2, 5 and 20 °C min−1 in a stream of dry air. A model-free kinetic analysis approach based on the differential isoconversional method of Friedman was used to calculate the kinetic parameters. The results of TG-DTA-FTIR analyses and the variation of the value of activation energy E along the reaction progress α indicate the complex character of the decomposition of neat AN as well as of the interactions occurring at thermal treatment of AN prills coated with limestone and dolomite powder.  相似文献   

2.
Having two active peroxide groups, 1,1-bis(tert-butylperoxy)cyclohexane (BTBPC) has a certain degree of thermal instability. It is usually used as an initiator in a chemical process, and therefore, careless operation could result in severe accidents. This study emphasized the runaway reactions of BTBPC 70 mass% (4.5–5.2 mg), the relevant thermokinetic parameters, and the thermal safety parameters. Differential scanning calorimetry was used to evaluate the above-mentioned thermokinetic parameters, using four low heating rates (0.5, 1, 2, and 4 °C min?1) combined with kinetic simulation method. The results indicated that apparent exothermic onset temperature (T o), apparent activation energy (E a), and heat of decomposition (ΔH d) were ca. 118 °C, 156 kJ mol?1, and 1,080 kJ kg?1, respectively. In view of process loss prevention, at the low heating rates of 0.5, 1, 2, and 4 °C min?1, storing BTBPC 70 mass% below 27.27 °C is a more reassuring approach.  相似文献   

3.
The effect of heating rate on the thermal behavior of ammonium nitrate (AN) and on the kinetic parameters of decomposition of AN and its blends with limestone and dolomite was studied on the basis of commercial fertilizer-grade AN and several Estonian limestone and dolomite samples. Experiments were carried out under dynamic heating conditions up to 900 °C at heating rates of 2, 5, 10 and 20 °C min−1 in a stream of dry air using Setaram Labsys 2000 equipment. For calculation of kinetic parameters, the TG data were processed by differential isoconversional method of Friedman. The variation of the value of activation energy E along the reaction progress α showed a complex character of decomposition of AN—interaction of AN with limestone and dolomite additives with the formation of nitrates as well as decomposition of these nitrates at higher temperatures.  相似文献   

4.
Thermal cracking of waste cooking oil (WCO) for production of liquid fuel has gained special interest due to the growing demand of renewable fuel, depleting fossil fuel reserves and environmental issues. In the present work, thermal cracking of WCO to produce liquid hydrocarbon fuels without any preprocessing has been studied. Moreover, non-isothermal kinetics of WCO using thermogravimetric analysis (TGA) has been studied under an inert atmosphere at various heating rates. According to TGA result, active thermal decomposition of WCO was found to be between 318 and 500 °C. Furthermore, the temperature at which the maximum mass loss rate attained was shifted to higher values as the heating rates increased from 10 to 50 °C min?1 and the values were found to be approximately similar to that of R 50. Besides, model-free iso-conversion kinetic methods such as Friedman (FM), Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) were used to determine the activation energies of WCO degradation. The average activation energy for the thermal degradation of WCO was found to be 243.7, 211.23 and 222 kJ mol?1 for FM, KAS and FWO kinetic methods, respectively. Additionally, the cracking of WCO was studied in a semi-batch reactor under an inert atmosphere and the influences of cracking temperature, time and heating rates on product distribution were investigated. From the reaction, an optimum yield of 72 mass% was obtained at a temperature of 475 °C, time of 180 min and a heating rate of 10 °C min?1. The physicochemical properties studied were in accordance with ASTM standards.  相似文献   

5.
Simultaneous thermoanalytical techniques were used for the characterization of the thermal decomposition of ketoprofen??active substance and tablets. DTA and DSC curves showed that ketoprofen melts before the decomposition. A kinetic study regarding the ketoprofen??active substance??s thermal decomposition was performed under non-isothermal conditions and in a nitrogen atmosphere at five heating rates: 2.5, 5, 7.5, 10 and 15 °C min?1. The kinetic parameters of thermal decomposition process were obtained from TG/DTG curves using the following differential methods: Friedman isoconversional, Chang, respectively, integral methods: Flynn?CWall?COzawa, Kissinger?CAkahira?CSunose, Coats?CRedfern and Madhusudanan. The careful treatment of the kinetic parameters obtained in certain thermal conditions was confirmed to be necessary as well as a different strategy of experimental data processing.  相似文献   

6.
Ammonium nitrate (AN) is one of the main nitrogen fertilizers used in fertilization programs. However, AN has some serious disadvantages — being well soluble in water hardly 50% of the N-species contained are assimilated by plants. The second disadvantage of AN is associated with its explosive properties. The aim of this paper was to clarify the influence of different lime-containing substances — mainly Estonian limestone and dolomite — as internal additives on thermal behaviour of AN. Commercial fertilizer grade AN was under investigation. The amount of additives used was 5, 10 or 20 mass%, or calculated on the mole ratio of AN/(CaO, MgO)=2:1 in the blends. Experiments were carried out under dynamic heating condition up to 900°C (10°C min−1) in a stream of dry air or N2 by using Setaram Labsys 2000 equipment coupled to Fourier transform infrared spectrometer (FTIR). The results of analyses of the gaseous compounds evolved at thermal treatment of neat AN indicated some differences in the decomposition of AN in air or in N2. At the thermal treatment of AN’s blends with CaCO3, MgCO3, limestone and dolomite samples the decomposition of AN proceeds through a completely different mechanism — depending on the origin and the content of additives, partially or completely, through the formation of Mg(NO3)2 and Ca(NO3)2.  相似文献   

7.
In this study, the thermal behavior in terms of glass transition (T g), degradation, and thermal stability of four commercial new-generation posterior bulk fill composites (Surefill SDR, Dentsply; Quixfill, Dentsply; Xtrabase, Voco; and Xtrafill, Voco) activated by light-emitting diodes (LEDs) was analyzed by thermogravimetric analysis (TG), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The activation energies (E a) for the decomposition of the dental resins were calculated based on the Kissinger and Doyle kinetic models from the peaks of the endothermic curves obtained when the specimens were heated at four different temperatures (5, 10, 15, and 20 °C min?1) during DSC. The results show that the Xtrabase composite displayed the highest T g (120 °C at a 5 °C min?1 heating rate) and E a (157.64 kJ mol?1) values associated with thermal degradation from the main chain of the polymer.  相似文献   

8.
Thermogravimetric (TG) data of oil sand obtained at Engineering Research Center of Oil Shale Comprehensive Utilization were studied to evaluate the kinetic parameters for Indonesian oil sand samples. Experiments were carried out at heating rates of 5, 15, and 25 °C min?1 in nitrogen, 10, 20, and 50 °C min?1 in oxygen atmosphere, respectively. The extent of char combustion was found out by relating TG data for pyrolysis and combustion with the ultimate analysis. Due to distinct behavior of oil shale during pyrolysis, TG curves were divided into three separate events: moisture release, devolatilization, and evolution of fixed carbon/char, where for each event, kinetic parameters, based on Arrhenius theory, were calculated. Coats–Redfern method, Flynn–Wall–Ozawa method, and distributed activation energy model method have been used to determine the activation energies of degradation. The methods are compared with regard to their characteristics and the ease of interpretation of the thermal kinetics. Activation energies of the samples were determined by three different methods and the results are discussed.  相似文献   

9.
Thermokinetic behaviour of SnCl2 was investigated using differential scanning calorimetry and thermogravimetry techniques under non-isothermal conditions in air, complemented by electron microscopy and Raman spectroscopy. According to the results obtained, the oxidation of SnCl2 at the heating rates of 5 and 100 °C min?1 leads to the in situ formation of highly crystalline SnO2 nanostructures in the form of nanoparticles and nanorods, respectively. The oxidation of SnCl2 was found to be a liquid–solid (LS) phase transition at the heating rates equal or lower than 10 °C min?1 and a gas–solid phase transition at the heating rates equal or greater than 20 °C min?1. The activation energy of melting, vaporisation and LS oxidation of SnCl2 was determined to be 198, 93 and 91 kJ mol?1, respectively.  相似文献   

10.
Thermal degradation behavior and kinetics of a biomass waste material, namely walnut shell, were investigated by using a thermogravimetric analyzer. The desired final temperature of 800 °C was achieved at three different heating rates (2, 10, and 15 °C min?1) under nitrogen flow (50 mL min?1). The TG and DTG curves exhibited three distinct zones that can mainly be attributed to removal of water, decomposition of hemicellulose + cellulose, and decomposition of lignin, respectively. The kinetic parameters (activation energy, pre-exponential factor, and reaction order) of active pyrolysis zone were determined by applying Arrhenius, Coats?CRedfern, and Horowitz?CMetzger methods to TG results. The values of activation energies were found to be between 45.6 and 78.4 kJ mol?1. There was a great agreement between the results of Arrhenius and Coats?CRedfern methods while Horowitz?CMetzger method yielded relatively higher results. The existence of kinetic compensation effect was evident.  相似文献   

11.
The non-isothermal experiments of limestone decomposition at multi-heating rates in O2/N2 and O2/CO2 atmospheres were studied using thermogravimetry. The limestone decomposition kinetic model function, kinetic parameters of apparent activation energy (E), and pre-exponential factor (A) were evaluated by Bagchi and Malek method. The results shown that in 20 % O2/80 % N2 atmosphere, the limestone decomposed slowly following the contracting sphere volume model controlled by boundary reaction (spherical symmetry) in two stages, and the E increased by about 50 kJ mol?1 in the second decomposition stage. But in 20 % O2/80 % CO2 atmosphere, the presence of high-concentration CO2 significantly inhibited the limestone decomposition, and made the decomposition process occur at high temperature with a rapid rate; the decomposition kinetics was divided into three stages, the first stage was an accelerated decomposition process following the Mampel Power law model with the exponential law equation, the second stage followed the nth order chemical reaction model as an αt deceleration process, and the third stage belonged to the random nucleation and nuclei growth model with the Avrami–Erofeev equation. And with the heating rate increasing, the reaction order n showed a slight rise tendency. The E was about 1,245 kJ mol?1 in 20 % O2/80 % CO2 atmosphere, but was only about 175 kJ mol?1 in 20 % O2/80 % N2 atmosphere. The E and A increased markedly in the O2/CO2 atmosphere.  相似文献   

12.
Thermal instability is a loss of thermal control which liberates high amount of energy and pressure. An incident took place during drying of an intermediate having amino alcohol functional group in agitated nutsche filter dryer at plant scale. During our investigation using advanced reactive system screening tool (ARSST), thermal decomposition was observed. Onset temperature of decomposition (T o) is at 85 °C, adiabatic temperature rise due to decomposition (ΔT ad) is 215 °C, maximum temperature attained due to decomposition (T max) is 300 °C, maximum self-heat rate (dT/dt)max is 6,215 °C min?1, and maximum rate of pressure rise (dP/dt)max is 1,442 psi min?1 obtained from ARSST experiments. T D24 value is 75 °C which was estimated experimentally. The correlations of these results were utilized to identify the root cause of this incident and necessary control measures were taken accordingly.  相似文献   

13.
Thermooxidative decomposition (TOD) of seven coal samples from different deposits (Bulgaria, Russia, Ukraine) was studied with the aim to determine characteristics of the process and the differences related to the origin of the coal samples studied. The experiments with a Setaram Setsys 1750 or Labsys Evo 1600 thermoanalyzers coupled to a Nicolet 380 FTIR spectrometer or Pfeiffer mass spectrometer, respectively, were carried out under non-isothermal heating conditions up to 1,000 °C at the heating rates of 1, 2, 5, 10, and 20 °C min?1 in an oxidizing atmosphere. A model-free kinetic analysis approach based on the differential isoconversional method of Friedman was used to calculate the kinetic parameters. The combined TG-FTIR and TG-MS study of TOD of the coal samples made it possible to identify a number of gaseous species formed and evolved at that as well as to determine the differences in the thermal behavior of the coal samples and in the emission profiles of these species depending on their origin. The value of activation energy E along the reaction progress α varied more for the samples with higher content of organic matter and, especially, for the samples having at that also quite high content of mineral matter, indicating to the close association of mineral matter with organic matter and fixed carbon.  相似文献   

14.
The propulsion of most of the operating satellites comprises monopropellant (hydrazine––N2H4) or bipropellant (monometilydrazine—MMH and nitrogen tetroxide) chemical systems. When some sample of the propellant tested fails, the entire sample lot shall be rejected, and this action has turned into a health problem due to the high toxicity of N2H4. Thus, it is interesting to know hydrazine thermal behavior in several storage conditions. The kinetic parameters for thermal decomposition of hydrazine in oxygen and nitrogen atmospheres were determined by Capela–Ribeiro nonlinear isoconversional method. From TG data at heating rates of 5, 10, and 20 °C min?1, kinetic parameters could be determined in nitrogen (E = 47.3 ± 3.1 kJ mol?1, lnA = 14.2 ± 0.9 and T b = 69 °C) and oxygen (E = 64.9 ± 8.6 kJ mol?1, lnA = 20.7 ± 3.1 and T b = 75 °C) atmospheres. It was not possible to identify a specific kinetic model for hydrazine thermal decomposition due to high heterogeneity in reaction; however, experimental f(α)g(α) master-plot curves were closed to F 1/3 model.  相似文献   

15.
The analysed substances, procaine and benzocaine, are two anaesthetic agents currently being administered in tablet form, also in the topical (cream, gel, balm) and injectable dosage forms. The TG/DTG/DTA curves were obtained in air at different heating rates. For determination of the heat effects, the DTA curves (in μV) were changed with the heat flow curves (in mW), so that the peak area corresponds to an energy in J g?1 or kJ mol?1. The non-isothermal experiments are preformed to investigate the thermal degradation process of these active substances, both as a solid and are performed in a dynamic atmosphere of air at different heating rates, by heating from room temperature to 500 °C. The kinetic analysis was performed using the TG data in air for the first step of substance’s decomposition at four heating rates: 7, 10, 12 and 15 °C min?1. The data were processed according to an appropriate strategy to the following kinetic methods: Kissinger–Akahira–Sunose, Flynn–Wall–Ozawa, Friedman and NPK, to obtain realistic kinetic parameters, even if the decomposition process is a complex one. Thermal analysis was supplemented using Fourier Transform infrared spectroscopy coupled with the TG device to identify the anaesthetics with any products which may have formed (EGA—the evolved gas analysis).  相似文献   

16.
Thermogravimetry (TG) and differential scanning calorimetry (DSC) are used in pharmaceutical studies for characterization of drugs, purity, compatibility of formulations, identification of polymorphism, evaluation of stability, and thermal decomposition of drugs and pharmaceutical formulations. Hydroquinone (HQ) and products containing HQ have been widely used as depigmentation agents for lightening the skin. Retinoids are compounds that have the basic core structure of vitamin A and its oxidized metabolites, or synthetic compounds that share similar mechanisms of action as naturally occurring retinoids. Depigmentants and excipients were analyzed by TG and DSC. The dynamic thermogravimetric curves were obtained on a SHIMADZU thermobalance, model DTG-60, using an alumina crucible, at the heating rate of 10 °C min?1, in the temperature range of 25–900 °C, under an atmosphere of nitrogen at 50 mL min?1. The sample's mass was 10 ± 0.05 mg. The DSC curves were obtained using Shimadzu calorimeter, model DSC-60, using aluminum crucible, at the heating rate of 10 °C min?1, in the temperature range of 25–400 °C. The thermogravimetric and calorimetric curves were analyzed using TASYS software SHIMADZU. In this study were found the interaction between retinoic acid (RA) and the following excipients: cetyl alcohol(CA), cetostearyl alcohol (CTA), glycerin(GLY), and dipropylene glycol (DPG), and that between HQ and the excipient, DPG. Therefore, additional studies are necessary to evaluate final formulations. Thermal analysis is an effective and reliable technique that can be used in the control of raw materials and pharmaceutical products, and for evaluating their employment potential in the development and characterization of products.  相似文献   

17.
Pyrolysis of pine needles was carried out in a semi-batch reactor. The effects of pyrolysis parameters such as temperature (350–650 °C), heating rate (10 and 50 °C min?1), nitrogen flow rate (50–200 cm3 min?1) and biomass particle size (0.25–1.7 mm) were examined on products yield. Maximum bio-oil yield of 43.76% was obtained at pyrolysis temperature of 550 °C with a heating rate of 50 °C min?1, nitrogen flow rate of 100 cm3 min?1 for biomass particle size of 0.6 < d p < 1 mm. The characterization of pyrolysis products (bio-oil, bio-char) has been made through different instrumental methods like Fourier transform infrared spectroscopy, gas chromatography–mass spectrometry, nuclear magnetic resonance spectroscopy (1H NMR), X-ray powder diffraction, field emission scanning electron microscope and Brunauer–Emmett–Teller surface area analysis. The empirical formula of the bio-oil and bio-char was found as CH1.47O0.36N0.005 and CH0.56O0.28N0.013 with heating value of 26.25 and 25.50 MJ kg?1, respectively. Results show that bio-oil can be potentially valuable as a renewable fuel after upgrading and can be used as a feedstock for valuable chemicals production. The properties of bio-char reveal that it can be used as solid fuels, as a cheap adsorbent and as a feedstock for activated carbon production.  相似文献   

18.
The aim of this paper is to present the comparative kinetics of thermal decomposition of K2[MoO(O2)2(C2O4)] (kalium oxalato-oxo-diperoxo molibdate), respectively Na2[MoO(O2)2(C2O4)] (natrium oxalato-oxo-diperoxo molibdate). The TG data were obtained at different heating rates: β = 2.5, 4, 5, and 10 °C min?1 in air and nitrogen (50 mL min?1), and the TG/DTG data were processed with the following methods: Friedman, Flynn–Wall–Ozawa and modified-NPK method.  相似文献   

19.
The heating rate effect on the thermal behavior of clays from Arumetsa and Kunda deposits (Estonia) and an illitic clay from Füzérradvány (Hungary) was studied. Experiments were carried out under dynamic heating condition up to 1050 °C at the heating rates of 1.25, 2.5, 5 and 10 °C min?1 in a stream of gas mixture containing 79 % of Ar and 21 % of O2 with Setaram Labsys 1600 analyzer. Two different ashes were used as additives: the electrostatic precipitator ash from the first field and the cyclone ash formed, respectively, at circulating fluidized bed combustion (temperatures 750–830 °C) and pulverized firing (temperatures 1200–1400 °C) of Estonian oil shale at Estonian Power Plant. For calculation of kinetic parameters, the TG data were processed by the differential isoconversional Friedman method. The results of thermal analysis and the variation of the value of activation energy E along the reaction progress α indicated the complex character of decomposition of clays and their blends with Estonian oil shale ashes, and the certain differences in thermal behavior of different clays depending on their origin.  相似文献   

20.
Thermal analysis is a routine method in the solution of pharmaceuticals problems such as the control of raw materials, to the determination of purity, to the qualitative and quantitative analysis of drug formulation, tests of thermal stability and compatibility, the determination of kinetic parameters, etc. The evaluation of thermal stability in the solid state is mostly made by analyzing their decomposition under isothermal and non-isothermal conditions. The present work reports the study on the thermal behavior of pentoxifylline—active substance and tablets, respectively, the determination of the kinetic parameters for the decomposition process under non-isothermal conditions and in a nitrogen atmosphere at five heating rates: 2.5, 5, 7.5, 10 and 15 °C min?1. For the determination of kinetic parameters from the TG/DTG curves, the following differential methods were utilized: Friedman isoconversional and Chang, respectively, integral methods: Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, Li–Tang, and Starink. Thermoanalytical curves showed that the active substance is thermally more stable than the tablets. The decrease in stability was attributed to the presence of excipients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号